
CS100J March 15, 2001
Prelim 2 7:30 PM – 9:00 PM

___ _________________
(Print last name, first name, middle initial/name) (Student ID)

Statement of integrity: I did not, and will not, break the rules of academic integrity on this exam:

__
 (Signature)

Circle Your Section:

Instructions:

• Read all instructions carefully, and read each problem completely before starting it!
• This test is closed book – no calculators, reference sheets, or any other material allowed.
• You must use blue or black pen or pencil.
• Conciseness, clarity, and style all count. Show all work (e.g., algorithms, box diagrams) to receive partial credit.
• Carefully comment each control structure and major variable.
• If you use break (not in switch) or System.exit to exit any control structure, you will lose points!
• You may not use Java arrays or any MATLAB code.
• You may not alter, add, or remove any code that surrounds the blanks and boxes.
• Only one statement, expression, modifier, type, or comment per blank!
• Use the backs of pages if you need more space or scrap. You may request additional sheets from a proctor.
• If you supply multiple answers, we will grade only one.

Core Points:

1. ________ (30 points) __________

 2. ________ (30 points) __________

 3. ________ (40 points) __________

Total: ________/(100 points) __________

Bonus Points:

Bonus: ________/(3 points)

Tuesday Wednesday

HO 306 HO 401 PH 407 PH 307 PH 213 UH 111

12:20 5: Barr

1:25 1: Renaud 2: Scovetta 9: Barr 6: Renaud

2:30 3: Barr 8: Swamy

3:35 4: Ang 8: Swamy
Page 1

CS100J Spring 2001 Prelim 2 Initial or Name: Page 2
Problem 1 [30 points] “Non-OOP”: nested control structures, methods, remainder operator

Background: A factor of a number is an integer that may be multiplied by other integers to produce that number. For instance,
10 has the factors 10, 5, 2, and 1.

Problem: In Problem1, the user enters a sequence of positive, strictly increasing integers. For each integer, the program
computes the sum of the factors. When the user enters an out-of-bounds value (non-positive or greater than 1000), Problem1
reports the maximum sum. Complete Problem1 by filling in the blanks and boxes for the following methods:

• max: returns the maximum value of two integers
• sumFactors: returns the sum of the factors of an integer. You may use a for loop if you wish.
• main: obtains integers from the user, finds the sum of the factors of each integer, and reports the maximum sum after the

user enters a non-positive integer or integer greater than 1000. If the user enters an in-bounds integer that is less than or
equal to the previously entered integer, the program re-prompts the user to enter a larger integer.

Hints: You must account for the fact that user might enter an out-of-bounds value the first entry. TokenReader handles re-
prompting the user when illegal types are entered. Use the remainder operator % to help find the factors.

Example run:

Enter an integer: 5
Sum: 6
Enter an integer: 4
Your integers must increase!
Enter an integer: 6
Sum: 12
Enter an integer: -1
Max sum: 12

public class Problem1 {

// Return the sum of the factors of integer x:
public static int sumFactors(int x) {

} // method sumFactors

// Return the maximum of two integers x and y:
public static int max(int x, int y) {

} // method max

CS100J Spring 2001 Prelim 2 Initial or Name: Page 3
// Find the maximum sum of the factors for integers entered by the user:
public static void main(String[] args) {

// Initialize variables:
TokenReader in = new TokenReader(System.in);
System.out.print("Enter an integer: ");
int newnum = in.readInt(); // input integer, so far

int oldnum = ____________________ ; // previous integer, so far

int maxsum = ____________________ ; // max sum of factors, so far

// Find maximum sum of factors of user-input integer $newnum$:

// Report maximum sum:

} // method main

} // class Problem1

CS100J Spring 2001 Prelim 2 Initial or Name: Page 4
Problem 2 [30 points] OOP & Trees, modifiers, toString

Background: Assume that an extraterrestrial race reproduces strictly by cloning, whereby a Clone may only have at most
one parent and one child. Therefore, the lineage (the listing of ancestors and descendents) of a Clone is a tree that has no
branching at each node. Each parent is also called a predecessor (one who comes before another).

Problem: Complete class Clone by filling in the blanks and boxes for the following methods that print out the lineage of
Clones created in the main method, which is supplied for you:

• Clone: creates a new Clone with name, age, and parent. If the Clone has no parent, parent is null.
• toString: returns a String that contains the description of a Clone, using the following format:

Clone name: age: age, parent: parent’s name. If the Clone has no parent, use the label none for
parent’s name. Hint: See the example run for a demonstration.

• showLineage: finds the predecessors of the input Clone c. Print each predecessor by finding and printing a
description of the parent of the input Clone c’s parent, c’s parent’s parent, and so forth, until reaching the top of the tree.
If c has no parent, output no predecessors.

Example run:

Lineage of Clone argo:
no predecessors
Lineage of Clone brur:
-> Clone argo: age: 70, parent: none
Lineage of Clone chag:
-> Clone brur: age: 40, parent: argo
-> Clone argo: age: 70, parent: none
Lineage of Clone drym:
-> Clone chag: age: 10, parent: brur
-> Clone brur: age: 40, parent: argo
-> Clone argo: age: 70, parent: none

public class Problem2 {
public static void main(String[] args) {

// Create clones:
Clone a = new Clone("argo",70,null);
Clone b = new Clone("brur",40,a);
Clone c = new Clone("chag",10,b);
Clone d = new Clone("drym", 1,c);

// Report lineage of the clones:
Clone.showLineage(a); Clone.showLineage(b);
Clone.showLineage(c); Clone.showLineage(d);

} // method main
} // class Problem2

class Clone {
// Instance variables:

private String name; // name of current Clone
private int age; // age of current Clone
private Clone parent; // parent of current Clone, if any

// Create a Clone with $name$, age, and $parent$ (which may be $null$):
public Clone(String name, int age, Clone parent) {

} // constructor Clone

CS100J Spring 2001 Prelim 2 Initial or Name: Page 5
// Return a description of the current Clone as a String:
// Clone <name>: age: <age>, parent: <parent’s name>
// Indicate that a parent does not exist with the String "none":

public String toString() {

} // method toString

// Describe predecessors for input Clone c by printing the lineage of c:

_____________ ________________ void showLineage(Clone c) {

} // method showLineage

} // Class Clone

CS100J Spring 2001 Prelim 2 Initial or Name: Page 6
Problem 3 [40 points] OOP & Simulation, encapsulation

Background: Assume that two people are rowing a boat for an hour. Each rower has a deterministic efficiency, which is a
function of time t, using the formula . Given a range of time from 0 to 1 hour (3600
seconds), the formula produces the range . Each rower also has a random capability of rowing called rate
(meters/second) which is chosen from the range . The boat starts at initial position of 0 meters when time

seconds. When second, both rowers attempt to row, which propels the boat forward. Each rower contributes to
the motion an amount . For instance, when becomes 1, each rower contributes an
amount of distance ((1/900)–(1/3240000))*rate*(1–0), using each rower’s rate of rowing. After an hour, the rowers want to
know how far they’ve gone.

Problem: Write a program that computes and reports the amount of distance a boat travels in one hour by completing the
blanks and boxes below, which have the following methods:

• Rower: creates a new Rower and sets the rowing rate.
• changeEfficiency: updates the current Rower’s efficiency eff for the new input time t.
• rowDist: returns the amount of distance the current Rower moves the Boat.
• main: runs the simulation with two Rowers and a Boat and reports the total distance the Boat travels. For each time

increment of 1 second, both Rowers contribute to the Boat’s distance, which stops incrementing when time exceeds
1 hour.

class Rower {
private double eff; // efficiency (ranges from 0 to 1)
private double rate; // rate of rowing (meters/second)
private final double MIN = 0.75; // min rate Rower can row (meters/second)
private final double MAX = 1.50; // max rate Rower can row (meters/second)

// Create a new Rower with a random rate (MIN <= rate < MAX):
public Rower() {

____________ = __ ;

} // constructor Rower

// Update the Rower’s efficiency eff, which is a function of time t:

______________ _______________ changeEfficiency(int t) {

____________ = __ ;

} // method changeEfficiency

// Return the distance Rower can row based on current efficiency,
// change in time, and rate$:

public double rowDist(int oldtime, int newtime) {

} // method rowDist

} // Class Rower

efficiency t 900⁄ t2 3240000⁄–=
0 efficiency 1≤ ≤

0.75 rate 1.50<≤
t 0= t 1=

efficiency rate change of time×× t

CS100J Spring 2001 Prelim 2 Initial or Name: Page 7
class Boat {
private double position; // initial position of Boat
// Create Boat and set initial $position$:

Boat(double position) { this.position = position; }
// Update the Boat’s current $position$:

public void moveBoat(double change) { position += change; }
// Return the Boat’s current $position$:

public double getPosition() { return position; }
} // class Boat

public class Problem3 {
// Run simulation by creating two Rowers, one Boat, and moving the Boat.
// For each time increment of 1 second, increment the amount the Boat moves until
// time reaches one hour:

public static void main(String[] args) {

} // method main

} // class Problem3

Checklist: Congratulations! You reached the last page of Prelim 2. Make sure your name, ID, and section are clearly indicated.
Also, re-read all problem descriptions/code comments/instructions. If you reached this part before exhausting the allotted time,
check your test! Maybe you made a simple mistake? Please check the following:

____ maintained all assumptions

____ remembered semicolons

____ didn’t confuse equals with assign operators

____ completed all tasks

____ filled in ALL required blanks

____ given comments when necessary

____ declared all variables

____ maintained case-sensitivity

____ handled “special cases” correctly

____ indicated which solution to grade if you wrote multiple attempts

Bonus: [3 points] Remember that bonus points do not count towards your core-point total! You will lose additional points
from your entire CS100J bonus score for “inappropriate” language. To receive bonus points, tear this sheet off from
the exam, make sure the proctor records the points on the front page, and put it in a separate pile to maintain
anonymity.

1) What are 1 to 3 things we can still do to improve lecture? (You may say what you like, as well.)

2) What are 1 to 3 things we can still do to improve section? (You may say what you like, as well.)

3) What are 1 to 3 things we can still do to improve CS100J, overall? (You may say what you like, as well.)

	CS100 J March 15, 2001
	Prelim 2 7:30 PM – 9:00 PM
	Circle Your Section:
	Instructions:
	Core Points:
	Bonus Points:

	Problem 1 [30 points] “Non-OOP”: nested control structures, methods, remainder operator
	Problem 2 [30 points] OOP & Trees, modifiers, toString
	Problem 3 [40 points] OOP & Simulation, encapsulation
	Bonus: [3 points] Remember that bonus points do not count towards your core-point total! You will...

