
CS99 Lab 8 October 21, 2004

Matlab functions: The syntax

Typically, each function should be placed in its own M-file, which must have the same name as the
function. Matlab functions have the following basic syntax:

function retvar = funcname(argvarlist)
% Some code can go here
% . . .
retvar = <some expression>;
% some more code might go here

The italicized terms have the following meaning:

retvar The variable whose value is returned by the function. Note that retvar must be assigned a
value somewhere within the body of the function.

funcname The function name. The M-file containing the function must be named funcname.m.

argvarlist The list of argument variables (also called parameters), separated by commas if there is
more than one argument.

Below is an example of a simple function which takes a single (numeric) argument, and returns the value
of that argument incremented by 1.

function m = inc(n)
m = n+1

And here is the function that takes two arguments, adds them, and returns the result.

function c = add(a, b)
c = a + b;

Function calls

Whenever we type in the name of a function in the command window, or use it anywhere in our code,
we are making a function call. The code responsible for making the function call is referred to as the
caller, and the function can be referred to as the callee.

The following sequence of events must take place whenever a function call is made:

1. The caller supplies the function arguments. The caller should supply as many arguments as are
required by the function, and in the same order. All arguments are evaluated, and the values are
passed along to the callee function.

2. Matlab switches into the scope of the function, getting ready to execute the code inside it. All
variables outside the function become invisible to Matlab, so there can be no conflict between the
caller’s and callee’s variables, even if they share the same name. Despite being invisible, all of the
caller’s variables persist in Matlab’s memory.

3. The variables in the function’s argument list are assigned the values supplied by the caller.

4. The code in the body of the function is executed. At some point, the return variable should be
assigned a value.

5. Matlab switches out of the scope of the function, and passes the value of the return variable to
the caller. All variables inside the function become invisible to Matlab and their values disappear
from Matlab’s memory. Matlab once again begins to see all of the caller’s variables.

1



CS99 Lab 8 October 21, 2004

Note that functions return a value to the caller, rather than just printing it out. The caller is then free
to do as it pleases with the returned value: it can store it in a variable, use it in an expression, pass it
on to another function, or, of course, print it out. However, if we make a function call without putting
a semi-colon at the end of the line, Matlab will output the value returned by the function - as it does
with every statement that has a value whenever we omit the semi-colon.

Exercise 8.1: Save the functions inc and add into their respective M-files. Then, type the following
lines of code into the command window:

>> inc(3) % Output, if any? _____________________
>> inc(4); % Output, if any? _____________________
>> k = inc(5);
>> disp(k); % Output? _____________________________
>> a = 4;
>> m = inc(a) % Output? _____________________________
>> b = 7;
>> add(a, b); % Output? _____________________________
>> c = add(a, b); %
>> disp(c); % Output? _____________________________
>> add(a, c) % Output? _____________________________
>> disp(c); % Output? _____________________________
>> fprintf(’%d\n’, add(inc(6), add(7,3))); % Output? _____

Exercise 8.2: Write a Matlab function powersum which takes two arguments, a vector v and an integer
p, and returns the sum of the elements of v raised to the power p. That is, the function powersum should
compute vp

1 + vp
2 + ...vp

n, where n is the number of elements in v. When finished, try out your function
by entering the following commands:

>> v = [2, 3, 5, 7];
>> p = 4;
>> powersum(v, p)
>> w = [6, 7, 8, 9, 10, 11];
>> c = 2;
>> s = powersum(v, p);
>> n = 10;
>> fprintf(’The sum of cubes of the first %d integers is %d\n’, n, powersum(1:n, 3));

M-files, functions, and scripts

By this point, you may have noticed that there are two different types of M-files. The M-files that contain
functions are called function M-files. The M-files that do not define any functions, but only contain code
to execute, are called script M-files, or simply scripts. Mixed M-files, that start off as scripts, and then
try to define a function, are not allowed in Matlab. If you want to define a function, your M-file must
start with the function header.

Scripts and functions are similar in some ways. Both are contained within M-files, and both contain
executable code. Any Matlab statement that can appear inside a script can also appear inside a function,
and vice versa (with the exception of the function header, and at least one other statement, which is
only allowed for functions). Functions can even be called from within scripts, and scripts from within
functions. However, there are a couple of major differences:

• Unlike functions, scripts cannot take arguments, and cannot return values. So, it would be doubly
syntactically incorrect to write x = scr(5) if scr is the name of some script.

2



CS99 Lab 8 October 21, 2004

• All variables used inside a function are local to that function, and only exist in memory while the
function executes. On the other hand, all variables used in a script exist within the scope of the
script’s caller, and their values persist even after the script exits. Thus, a script that is called from
the command window will effect the variables in the command window, and a script that is called
from a function will effect the variables in that function for as long as the function executes. So it
is much easier to run into variable name conflicts with scripts than with functions.

Exercise 8.3: Below is code for two scripts and a function that will be calling one another.

%%%%%%%% Save as script1.m %%%%%%%%%%

x = 5;
fprintf(’In script1, x=%d\n’, x);
func(x);
fprintf(’In script1, x=%d\n’, x);
x = func(x);
fprintf(’In script1, x=%d\n’, x);

%%%%%%%% Save as func.m %%%%%%%%%%%%%

function x1 = func(x)
x = x+1;
fprintf(’In func, x=%d\n’, x);
script2;
fprintf(’In func, x=%d\n’, x);
x1 = x;

%%%%%%%% Save as script2.m %%%%%%%%%%

fprintf(’In script2, x=%d\n’, x);
x = x+1;
fprintf(’In script2, x=%d\n’, x);

If we run script1, what output will it produce? First, try to predict the output without running the
script. Then, run the script, and see if the results agree with your prediction.

Functions that return multiple values

Sometimes, we may want our function to return more than one value at a time. For instance, if we
wanted to find the maximum element of a vector, we would probably want to know both the value of
the maximum element, and the index in the vector where it is located. Matlab’s built-in max function
can do just that, by returning multiple values. For a demonstration, type in the following:

>> v = [9, 3, 7, 13, 10, 16, 12, 6, 4];
>> [val, index] = max(v);
>> disp(val);
>> disp(index);

We can write our own functions to return multiple arguments as well. The syntax has the following
familiar general form:

3



CS99 Lab 8 October 21, 2004

function [retvar1, retvar2, . . . ] = funcname(argvarlist)
% Some code can go here
% . . .
retvar1 = <some expression>;
% yet some more code might go here
retvar2 = <some other expression>;
% . . .
% some more code might go here

Here, retvar1, retvar2, etc. are the variables whose values will be returned to the caller. We can
have arbitrarily many return variables, just as we can have arbitrarily many argument variables for our
function.

Here is an example of a simple function that takes two (integer) arguments a and b, and returns both
the result of the whole number division of a by b, and the remainder of that division.

function [q, r] = divmod(a,b)
q = floor(a/b);
r = mod(a,b);

Note that if we have multiple return variables, they must be enclosed in square brackets in the function
header. This is similar to the notation for creating vectors – not coincidentally so! Nonetheless, while
there are similarities, it is important to remember that the function returns not a single vector, but
multiple separate values. Each of the individual returned values can be anything, from a number, to a
character string, or even a separate vector!

Unlike with functions that return only one value, if you would like to capture multiple return values,
you must supply a variable to store each return value when you make your function call. For instance,
if you would like to obtain both the quotient and the remainder from our divmod function, you would
need to call it as follows:

>> [quot, rem] = divmod(38, 9);
>> fprintf(’The quotient is %d, and the remainder is %d\n’, quot, rem);

However, often we don’t care about all the values returned by a function. For instance, we could only
care about the first two arguments returned by a function, or only one. In that case, we only need to
supply as many variables as we want return values when making our function call. All the other returned
values will be simply discarded by Matlab. On the other hand, if we supply more variables in our call
than are returned by the function, an error will be generated. For example, type the following:

>> q = divmod(38, 9);
>> disp(q);
>> fprintf(’The quotient is %d\n’, divmod(101, 13));
>> [q, r, junk] = divmod(76, 12);

Exercise 8.4:
Recall from high school algebra that the quadratic equation has the general form ax2 + bx + c = 0.
Recall also that the solution to this equation is given by the formula:

x =
−b±

√
b2 − 4ac

2a

Write a Matlab function quadroot that takes as arguments a, b, and c, returns both roots of the quadratic
equation. Then, test your function on the following command-window input

4



CS99 Lab 8 October 21, 2004

>> [x1, x2] = quadroot(1, 0, -16)
>> [x1, x2] = quadroot(9, 12, 4)
>> x1 = quadroot(8, 15, -6)
>> [x1, x2, x3] = quadroot(3, 22, 16)

Solutions to selected exercises

Exercise 8.2

function s = powersum(v, p)
s = 0;
for k = 1:length(v)

s = s + v(k)^p;
end

Exercise 8.4

function [r1, r2] = quadroot(a, b, c)
q = sqrt(b^2 - 4 * a * c);
r1 = (-b + q) / (2 * a);
r2 = (-b - q) / (2 * a);

5


