CS 6156

Runtime Verification

Owolabi Legunsen

On the state of software quality

GOOGLE SELF-DRIVING CAR CAUSED FREEWAY

@l!" New Hork Times CRASH AFTER ENGINEER MODIFIED ITS
Airline Blames Bad Software SOFTWARE

in San Francisco Crash BY JASON MURDOCK ON 10/17/18 AT 11:34 AM m

~9% of 2017
US GDP

Report: Software fail i 81 tilkion iy Flamrcial Hard Questions
eport. o0 are 1aliure caus 4 Trion INn frinancia .
. Raised When A

losses in 2017

| . I
Software testing company Tricentis found that retail and consumer technology SOftware GlltCh
were the areas most affected, while software failures in public service and
Takes Down An

healthcare were down from the previous year.

By Scott Matteson W | January 26, 2018, 7:54 AM PST Airliner Forbes

Intro to Runtime Verification (RV)

* RV is an emerging discipline for checking that

sefbwere executions satisfy some specifications
system

e e.g., thisis one of only ~¥3 RV courses in the world

* RV brings the mathematical rigor of formal

verification to everyday sefewese development
system

* RV is often called a “lightweight” formal method

Correctness Guarantee

One reason why RV is appealing

A
O
Formal Verification:
Prove mathematically
that a program is correct
O
RV: Check that program
executions are correct
O
Testing: Check if subset of program
inputs give correct output
>

Scale

About Owolabi

e Research interests: software testing and applied
formal methods like RV

* | received my PhD from UIUC in 2019

* thesis: incremental RV during software testing

* | found my thesis topic while trying to streamline

work with my two co-advisors

Who's using RV? ARTCAT

Deploy local monitor policies to running
applications. Policies watch for malicious
behavior and carry out local reflex
responses.

Report momtor eventsto e

oning e to track overall system
health detect addltlonal and multi-program
attacks. Engine carries secondary
respornses.

Long-term and recurrent problems result
in longer-term responses, €.¢., automated
patch generation, manual remediation.

https://grammatech.github.io/prj/artcat

User App Server App Server App

| Reasoning _ __ ‘ / |
' Engine b _ 1 1.
T Web UI
Automated C)
Patch Manual
Generator <rs |3 Repair

Who’s using RV? (2)

Automated Reasoning for $3 Consistency: Implementation Code

Amazon S3

At Fial

Full screen (f)

) 12:53/26:38 -« Auto..

https://www.youtube.com/watch?v=B0yXz6EeCaA .

Correctness Guarantee

>

What this course is about (1)

Formal Verification

Foundations of RV

1998 ®
Testing

>

Scale

How does RV work? How to scale RV to large software?

Correctness Guarantee

What this course is about (2)

>

A
®

» @ 7?77

Formal Verification P ®

A®
/"/’
Now @~
Current challenges in RV

o

Testing
Scale

Can RV scale like testing and have guarantees of verification?

9

What this course is about (3)

* Hands-on exposure to RV
* Learn how to use at least one RV tool
* Apply RV to open-source software

* Figure out if RV is an area of (research) interest for you

What this course is not about

* Formal verification, proof methodology, etc.

* Learning about logic (but we will use some logics)

e Software engineering knowledge and skills

e Take CS5150 (Sp’22) or CS5154 (Fa’22) if that’s your goal

Correctness Guarantee

>

Your turn: other QA approaches?

Formal Verification

? | O

Testing

Scale

12

>

Small group discussion (5 mins)

* Introduce yourself to people in your group

 What other QA approaches have you used or heard
about?

 What are the advantages and disadvantages of each?

e Share the results of your group discussion

What did your group discuss?
Qp (9 (o

What did your group discuss?
@A Prss Cown S

Now that we broke the ice...

CS6156 1s a
discussion-based
class

Formal (static) verification

* E.g., model checking, static analysis

Code Model

/int main() { N\

short int a = 1024:

int 1.2

tar 41 = Q5 1. < 10;
S = Z;

}

return a;

U

Good code coverage
Applied early in development
Mature and well studied

\/

Pros ______________|cCons

+

Spec

Errors in modeling
False positives
Often does not scale

Bug 1
Bug 2

17

Software testing

Program Input

Expected output O racC | - Pass/Fail

Easier for most developers Low code coverage (misses bugs)

Scales well in practice Writing good oracles is hard

Leverages developer insights High maintenance costs, e.g.,
obsolete tests, slow tests

18

Runtime verification

Violations

Pros ______________|Cons

No false positives

Scales better than “full”
formal verification

Provides additional oracles
for software testing

Limited to observed executions

Currently requires training in formal
methods

More costly than software testing
(higher overheads)

19

How runtime verification works

Violations

Monitors
Instrument Instrumented Execute
Code

Events

* Many (but not all) RV techniques follow this model

* CS 6156 is (mostly) organized around this model

20

What you’ll learn (events, traces)

Violations

Monitors

Instrumented

Instrument Execute
Code ‘

i Events

—

* A formal view of events, traces, and properties
* Program events (e.g., method calls, field access, etc)
e Event dispatch (e.g., which monitors to send events to?)

21

What you’ll learn (specifications)

Violations

Monitors

Instrumented
Code

Instrument Execute

Events

* What kinds of properties can RV check?

 What are languages for specifying properties in RV?
e LTL, ERE, CFG, and other logical formalisms

* Where do properties come from? (You may write some)

22

What you’ll learn (instrumentation)

Violations

A Monitors
Instrument Instrumented Execute
\ / Code

Events

* How to instrument code to obtain runtime events?
* Compile-time vs. runtime instrumentation
* Problems and challenges of instrumentation

23

What you’ll learn (monitors)

Violations

. Monitors

Instrument Instrumented Execute ‘
Code

Events

* Monitor synthesis (translating specs to monitors)

* Monitoring algorithms (how monitors get and check events)

* Monitor indexing and garbage collection
e Small-sized programs often generate tens of millions of monitors

24

What you’ll learn (other topics)

* How to reduce RV overhead?
 Combine with static analysis
 Hardware-assisted RV
* Sampling the events to check

* How to increase RV coverage?
* Use RV during software testing
* Incremental RV

* RV in other domains (depending on your interests)
* hardware monitoring, networking, etc.

s that all there is to RV?

rv22.gitlab.io

The topics of the conference include, but are not limited to:

e specification languages for monitoring 6? ?

® monitor construction techniques O’)—‘)'
e program instrumentation “ Sv
e logging, recording, and replay Q_

e combination of static and dynamic analysis

e specification mining and machine learning over runtime traces

e monitoring techniques for concurrent and distributed systems

e runtime checking of privacy and security policies

* metrics and statistical information gathering

® program/system execution visualization

e fault localization, containment, resilience, recovery and repair

e systems with learning-enabled components

e dynamic type checking and assurance cases
e runtime verification for autonomy and runtime assurance

Application areas of runtime verification include cyber-physical systems, autonomous systems,
safety/mission critical systems, enterprise and systems software, cloud systems, reactive control
systems, health management and diagnosis systems, and system security and privacy.

Questions about course content?

Logistics

EXPLORING LEARNING TOGETHER

https://freelearners.files.wordpress.com/2015/02/exploring_learning_together4-2arl9wb.jpg

28

CS6156 information

* Owolabi Legunsen
* Web: https://www.cs.cornell.edu/~legunsen

* Email: legunsen@cornell.edu
 Office Hours: Wed/Fri 4:00-5:00pm

* Course web page (with in-progress schedule)
* https://www.cs.cornell.edu/courses/cs6156/2023sp
* Go over the web page this week
* Announcements will be sent on Canvas

CS 6!
PhD-

PL

56: Advanced SE/PL/Systems

evel| course

Research Styles

Theoretical Systems Applied

2114, 5120, 6120, 6172

611x, 6180
6114, p156

30

You are expected to...

* Read assigned texts before each class
 Complete 2-3 homework assignments
* Conduct a research project

* Lead 1 paper discussion and present your project

Your grade will be based on...

Readings 10%
Homework (programming) 10%
In-class participation 5%

Presentation and discussion lead 15%
Course project 60%

My goal is to give everyone an A

But you must do your part

Readings

* Readings will provide deeper understanding of RV
* You *will* feel lost in CS 6156 if you don’t read

* Ask exactly 2-3 non-trivial questions on a shared PDF
e can’t ask a question that someone already asked

e questions should show that you have thought
deeply about the text

* bring other questions to class

* Due 11:59pm AOE the day before class

Presentation and discussion lead

e Each student will lead in-class discussion of a paper
* Work with Owolabi ahead of time to prepare
* Know the paper well, answer classmates’ questions
 Summarize the paper in class (~30mins)

* Discuss questions that others asked

omework

* 2 — 3 programming assignments

* Two goals
* Assess your understanding of reading and lectures

* Practice different aspects of RV

Course project goals

* Develop and present an idea
* Do a literature survey
 Work out your idea to a degree

e Evaluate the idea to some degree

* Write a 6-10 page paper on J

Ecﬁx@@g

’y
G40

36

Course projects logistics

* Work individually or in self-selected groups

* Working in groups is strongly encouraged, ideally
with folks at same “level”: PhD/MS, MEng, BS

* BYOP: Could be a research project that you're
working on already, but should be in state of infancy

* A set of RV-related projects will also be suggested
* But, executing the project is your job. So, choose wisely.

Tentative project timeline

Milestone___________________|Duedate _

Project proposal 2/14
Literature review 3/7
Intermediate project report 4/4

Final project report 5/9

38

Before next class (pre-homework)

* Read the course webpage

 https://www.cs.cornell.edu/courses/cs6156/2023sp
* Read the assigned “How to read/write SE paper” articles

* If you are not a PhD student, send me an email
answering these questions:
* Your background (courses, internship, other experience)
 What are you looking to get from CS 61567?
 What project option are you currently interested in?

Questions about logistics?

J;e,wx ol

Discuss: Why is RV ak”verification”?

Violations

Compared wiycm testing...

of

Expected output Pass/Fail

Program Input

Is there any QA approach that can’t be shown as above?

41

RV as “verification”? (vision)
1. RV can be done as a system runs in production

2. RV can allow the system to recover just before

violations occur
* Seems relatively under-explored in practice

3. So, RV can be used to ensure that a system never
goes wrong with respect to a specification

* In theory, RV can force the system to always be!gcirﬁct
1
42

ot reprem B2 56 o

Recall: high-level view of RV

Now: concrete examples of RV tool, inputs, and outputs

RV Violations

(Tool: JavaMOP)

e One RV tool that we will use in this class is JavaMOP
* https://github.com/runtimeverification/javamop

Example spec: Collection_SynchronizedCollection (CSC)

C' @& https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#synchronizedCollection(java.util. Collection)

synchronizedCollection

public static <T> Collection<T> synchronizedCollection(Collection<T> c)

It is imperative that the user manually synchronize on the returned collection when iterating over it:

Collection ¢ = Collections.synchronizedCollection(myCollection);

synchronized (c) {
Iterator 1 = c.iterator(); // Must be in the synchronized block
while (i.hasNext())
foo(i.next());

}

| Failure to follow this advice may result in non-deterministic behavior.

44

ive demo: RV of CSC on toy code

nttps://javamop.coecis.cornell.edu/run
Run JAVAMOP Online

= (I} javamo)
1: // Copyright (c) 2002-2014 JavaMOP Team. All Rights Reserved. = P
2: package mop; m [CFG
3. El L
1. Click on spec
5: import java.util.¥*; H g [1daINER
6: HashSet
7: [/ The 5SafeSyncCollection property is designed @ [}l PasswordLogi
g8: // to match a case where either a collection

SafeEnum
9: is synchronized and an non-synchronized ;
/1 y Y m [1l SafeFileWrfter

1@: // iterator is created for the collection, or)
SafeSyncfollection

11: // a synchronized iterator is created, but
. . SafeSyncCollection.mop

12: // accessed in an unsynchronized manner.

SafeSyncCoilection.rvm

14: | SafeSyncCollection{Object c, Iterator iter) { 2 [i SafeSyncCollection_1

SafeSyncCotlection.jar

- SafeSyncCollection_1.class

17: creation event svnc after() returnine(0Obhiect) : = SafeSyrcCollection_1expected e

ofped SafeSyncCollection_1.expected.out

SafeSyncCotlection_1java

Help ERE /SafeSyncCollection /SafeSyncCollection_1/SafeSyncCollection_ Ljava

= [Il SafeSyndCollection_2 =

fonitor Help

ERE /SafeSyncCollection /SafeSyncCollection_1/SafeSyncCollection_1.java ERE /SafeSync

B
i

eSvocCollection/SateSyncCollection.mop

4. Run with RV 18 2. Click on code

SateSyncCollectionMonitorAspect.aj is generated

-Processing 1 specification(s)

What we saw during the demo

* A spec written as an ERE
* JavaMOP output

e JavaMOP finds a violation in code that runs “correctly”
* is the violation a bug, though?

* An online environment for using JavaMOP

The “RV process” (also used in demo)

v

CSC was violated on... SuiteHTMLReporter.java:66... a

Manual inspection:
multiple threads
can access “im”

synchronized collection was accessed in thread—unsafe manner

AN

65: im=

66: for (IInvokedIVIethod T

JavaMOP

o TestOnClassListener |
47

RV in my SE (RV + testing) research

* Monitored the tests in 229 open-source software
* some of them have over 200K lines of code

* RV found hundreds of bugs that testing missed
* many have been confirmed

* But there are still many challenges
 You’ll discover some of them in this class

Next class...

 Start with the basics: events, traces, properties

* Reading is assigned (overview of RV)
* Due by 11:59pm AOE Thursday 2/3/2022

What we learned so far

* A comparison of RV with other QA approaches
* A whirlwind tour of RV
* Learning outcomes, course content, and logistics

* Demo of an RV tool (JavaMOP)

