
CS 6156 Runtime Verification

Events, Traces, Properties

Owolabi Legunsen

1

Concepts discussed in this class

• RV checks traces of system events against properties
that are specified in some language

• But, what do the terms in blue mean?

• These terms occur a lot in the RV literature

2

Let’s discuss…

• What is an event?

• What is a trace?

• What is a property?

3

Let’s discuss…

• What is an event?

• What is a trace?

• What is a property?

4

What is an Event?

• A mathematical (formal languages) view
• An event as a symbol e in an alphabet , where is a

finite set of such symbols

• A logical view
• An event as an atomic predicate in a logical formula

• A practical view
• An event as a state/step during system execution

5

When/how you’ll see these views

• View of events as symbols is common when
defining concepts or proving theorems in RV

• View of events as atomic predicates is often used
when specifying properties

• View of events as execution state/steps is required
for defining what to observe in system executions

6

Example: CSC spec

What events (execution states/steps) do we care about?

7

Example: events in the CSC spec

8

What view(s) of events are in CSC?

9

Events as execution states/steps

• Examples: method calls, field/variable access, lock
acquisition/release

• One often must define the conditions under which
to observe the execution step

• Events can carry data, or they can be parametric

10

What view of events is this? (1)

• A property is a logical formula over a set of events1

111Legunsen et al., Techniques for Evolution-Aware Runtime Verification, ICST 2019

What view of events is this? (2)

An RV tool instruments the program based on the
properties so that executing the instrumented
program generates events and creates monitors that
listen to events and check properties?1

121Legunsen et al., Techniques for Evolution-Aware Runtime Verification, ICST 2019

What view of events is this? (3)

• A bad prefix is a finite sequence of events which
cannot be the prefix of any accepting trace.2

132d’Amorim et al., Efficient Monitoring of ω-Languages, CAV 2005

Takeaway message on events

• Events are fundamental in RV theory and practice

• But RV literature will often mix the different views
of events

• So, when you read papers on RV, be careful to
distinguish these views

14

Any questions about events?

15

What is a trace?

There are many notions/views of traces in RV, e.g.,

16http://havelund.com/Publications/traces-isola-2016.pdf

What is a trace? Some views..

• A trace is a sequence of events
• In practice: sequences are finite
• In theory: we reason about infinite sequences

• If events are symbols in an alphabet , traces are
strings (or words) in *

• So, we can talk about (in)finite prefixes/suffixes of traces

17

What is a trace? (A definition)

Let be a set of events. A -trace (or simply a trace
when is understood or not important) is any finite
sequence of events in , that is, an element in *. If
event appears in trace w * then we write

.3

183Rosu and Chen, Semantics and Algorithms for Parametric Monitoring, LMCS 2012

Example 1: events and traces

Consider a resource (e.g., a synchronization object) that can
be acquired and released during the lifetime of a procedure
(i.e., between when the procedure begins and when it ends).
1. What events do we care about?

2. What is an example trace over events in 1?

19

“Good” and “bad” traces

• From example 1, are these good or bad traces:
• begin acquire release end
• begin acquire acquire release end
• begin acquire acquire release release end

• Properties formalize notion of “good” or “bad”
traces

• Intuition: traces validate or violate a property
depending on how the property is specified

20

What is a property?

• A property is a set of traces
• may include “good” traces and exclude “bad” traces
• or, it may exclude “good” traces and include “bad” traces

• Alternately, a property is a language of acceptable
or unacceptable traces (a subset of *).

• In practice, can you think of why set/language
inclusion/exclusion may be insufficient for RV?

21

Are these definitions sufficient?

• If “good” properties in example 1 are those in
which an acquired resource is released before the
procedure ends. Are these “good” or “bad” traces?

• begin acquire release acquire end
• begin acquire acquire

• Partial traces may be in “don’t know” category
• future events may lead to including/excluding the trace

• We need to build on the idea of partitioning traces
into categories

22

Properties: another definition

An -property P (or simply a property) is a
function P : Σ* C partitioning the set of traces
into (verdict) categories C.

• This definition is a better basis for monitoring
• C can be any set, e.g., {validating, violating, don’t-know}
• C is chosen depending on the specification language and

the property being specified

23

Properties partition sets of traces (1)

• Let regular expressions (RE) be the spec language
and choose C = {match, fail, dont-know}

• Then an RE, E, specifies property PE, defined as:
• PE(w) = match iff w is in the language of E
• PE(w) = fail iff w’ * s.t. ww’ is in the language of E
• PE(w) = dont-know otherwise

• This is the semantics of monitoring RE in JavaMOP

24

Examples: CSC-related traces

• CSC specifies “bad” traces as a regular expression:
• (sync asyncCreateIter) | (sync syncCreateIter accessIter)

• One matching trace:
• sync asyncCreateIter accessIter accessIter accessIter

accessIter

• Another matching trace:
• sync syncCreateIter accessIter accessIter accessIter

accessIter accessIter

26

Properties: other things to know

• Can all interesting system behavior be defined as
“sets of traces”?

• No. Hyperproperties5 are “sets of sets of traces”.

• Properties are sometimes called “trace properties”
• In contrast with “state properties”, which are defined in

terms of program values at a point in an execution
• xUnit Assertions are examples of “state properties”

275Clarkson and Schneider, Hyperproperties, CSF 2008

Questions about traces/properties?

28

Recall: events can be parametric

• Events in real programs occur on different “objects”

• RV tools must be able to handle parametricity to
correctly partition traces at runtime

• Let’s look at an example

36

Parameters

Acquire/release revisited

• Property: procedures must release acquired resources

• Spec: (begin(ϵ|(acquire(acquire|release)*release))end)*
• Consecutive “acquire” or “release” events have the effect of

acquiring or releasing the resource exactly once

• Categorize as a match, fail, or don’t-know (JavaMOP):

begin acquire acquire acquire release end begin acquire release end

37

Acquire/release revisited

• Same trace, but two different resources (r1 and r2):

begin‹› acquire‹r1› acquire‹r2› acquire‹r1› release‹r1› end‹›
begin‹› acquire‹r2› release‹r2› end‹›

• Categorize this parametric trace (JavaMOP)
• Your answer:

• Reason:

38

Monitoring a parametric trace (1)

• Intuition: split into two trace slices, one per resource

begin‹› acquire‹r1› acquire‹r2› acquire‹r1› release‹r1› end‹›
begin‹› acquire‹r2› release‹r2› end‹›

begin‹› acquire‹r1› acquire‹r1› release‹r1› end‹› begin‹› end‹›

begin‹› acquire‹r2› end‹› begin‹› acquire‹r2› release‹r2› end‹›

39

&

Monitoring a parametric trace (2)

• Then, check the trace slices non-parametrically:

begin acquire acquire release end begin end

begin acquire end begin acquire release end

40

Parametric trace slicing

• Essential for monitoring real software

• Future discussion: definitions and algorithms for
efficient trace slicing

• Defining parametric trace slicing and parametric
monitoring needs definitions of

• parametric events
• parametric traces
• parametric properties

41

What we discussed

• What is an event?

• What is a trace?

• What is a property?

• What are parametric events, traces, and properties?

• Intro to parametric trace slicing (to be continued…)

47

Any questions about events,
traces, and parameters?

48

