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Overview

• Motivation

• Self-Attention and Transformers

• Encoder-decoder with Transformers



Encoders
• RNN: map each token vector 

a new context-aware token
embedding using a 
autoregressive process

• CNN: similar outcome, but 
with local context using filters

• Attention can be an 
alternative method to 
generate context-dependent 
embeddings
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• What context do we want token embeddings to take into account? 

• What words need to be used as context here? 

LSTM/CNN Context

The ballerina is very excited that she will dance in the show.

• Pronouns context should be the antecedents (i.e., what they 
refer to)

• Ambiguous words should consider local context

• Words should look at syntactic parents/children

• Problem: very hard with RNNs and CNNs, even if possible



LSTM/CNN Context
• Want:

• LSTMs/CNNs: tend to be local

• To appropriately contextualize, need to pass 
information over long distances for each word

The ballerina is very excited that she will dance in the show.
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Self-attention
• Each word is a query to form attention over all tokens

• This generates a context-dependent representation 
of each token: a weighted sum of all tokens

• The attention weights dynamically mix how much is 
taken from each token

• Can run this process iteratively, at each step 
computing self-attention on the output of the 
previous level  

[Vaswani et al. 2017]
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Self-attention
w/Dot-product

[Vaswani et al. 2017]
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Multiple Attention Heads
• Multiple attention heads can 

learn to attend in different ways

• Why multiple heads? Softmax 
operations often end up peaky, 
making it hard to put weight on 
multiple items

• Requires additional parameters 
to compute different attention 
values and transform vectors 

• Analogous to multiple 
convolutional filters the  movie  was   great



Multiple Attention Heads
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What Can Self-attention do? 

• Attend to nearby related terms

• But just the same to far semantically related terms

The ballerina is very excited that she will dance in the show.
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Details Details Details
• Self-attention is the basic building 

block of an architecture called 
Transformers

• Many details to get it to work

• Significant improvements for many 
tasks, starting with machine 
translation (Vaswani et al. 2017) 
and later context-dependent pre-
trained embeddings (BERT; Devlin 
et al. 2018)

• A detailed technical description 
(with code): 
https://www.aclweb.org/anthology/
W18-2509/

[Figure from Vaswani et al. 2017]

https://www.aclweb.org/anthology/W18-2509/


MT with Transformers
• Input: sentence in source 

language

• Output: sentence in target 
language

• Encoder Transformer 
processes the input

• Decoder Transformer 
generates the output

• More generally: this defines an 
encoder-decoder architecture 
with Transformers



Encoder
• Self-attention is not order-sensitive

• Need to add positional information

• Add time-dependent function to token 
embeddings (sin and cos)

• Output: a set of token embeddings

[Positional Dimensions figure from Rush 2018]



Encoder
• Use parameterized attention
• Multiple attention heads, each 

with separate parameters 
• This increases the attention 

flexibility



Decoder
• Can’t attend to the whole output

• Why? It doesn’t exist yet!

• Tokens are generated one-by-one

• Solution: mask tokens that are not predicted 
yet in the attention

• First: self-attend to the output only 
Second: attend to both input and output

Input 
Embeddings


