CS5740: Natural Language Processing ## Recurrent Neural Networks Instructor: Yoav Artzi ## Overview - Finite state models - Recurrent neural networks (RNNs) - Training RNNs - RNN Models - Long short-term memory (LSTM) - Attention - Batching ### Text Classification - Consider the example: - Goal: classify sentiment How can you not see this movie You should not see this movie - Model: bag of words - How well will the classifier work? ### Text Classification - Consider the example: - Goal: classify sentiment How can you not see this movie You should not see this movie - Model: bag of words - How well will the classifier work? - Similar unigrams and bigrams - Generally: need to maintain a state to capture distant influences ## Finite State Machines - Simple, classical way of representing state - Current state: saves necessary past information - Example: email address parsing #### Deterministic Finite State Machines - S states - Σ vocabulary - $s_0 \in S$ start state - $R: S \times \Sigma \to S$ transition function - What does it do? - Maps input $w_1, ..., w_n$ to states $s_1, ..., s_n$ - For all $i \in \{1, ..., n\}$ $s_i = R(s_{i-1}, w_i)$ - Try to think on how we can use it for POS tagging and language modeling ## Types of State Machines #### Acceptor - Compute final state s_n and make a decision based on it: $y = O(s_n)$ #### Transducers - Apply function $y_i = O(s_i)$ to produce output for each intermediate state #### Encoders - Compute final state s_n , and use it in another model #### Recurrent Neural Networks - Motivation: - Neural network model, but with state - How can we borrow ideas from FSMs? - RNNs are FSMs ... - ... with a twist - No longer finite in the same sense #### RNN - $S = \mathbb{R}^{d_{hid}}$ hidden state space - $\Sigma = \mathbb{R}^{d_{in}}$ input state space - $s_0 \in S$ initial state vector - $R: \mathbb{R}^{d_{in}} \times \mathbb{R}^{d_{hid}} \to \mathbb{R}^{d_{hid}}$ transition function - Simple definition of *R*: $$R_{Elman}(s, x) = \tanh([x, s]W + b)$$ #### RNN Map from dense sequence to dense representation $$-\boldsymbol{x}_1$$, ..., $\boldsymbol{x}_n ightarrow \boldsymbol{s}_1$, ..., \boldsymbol{s}_n - For all $i \in \{1, ..., n\}$ $\mathbf{s}_i = R(\mathbf{s}_{i-1}, \mathbf{x}_i)$ - R is parameterized, and parameters are shared between all steps - Example: $$s_4 = R(s_3, x_4) = \cdots = R(R(R(R(s_0, x_1), x_2), x_3), x_4)$$ #### RNNs - Hidden states s_i can be used in different ways - Similar to finite state machines - Acceptor - Transducer - Encoder - Output function maps vectors to symbols: $$O: \mathbb{R}^{d_{hid}} \to \mathbb{R}^{d_{out}}$$ For example: single layer + softmax $$O(s_i) = \operatorname{softmax}(s_i W + b)$$ ## Visual Representation Recursive Representation **Unrolled Representation** ## Visual Representation ## Training - RNNs are trained with SGD and Backprop - Define loss over outputs - Depends on supervision and task - Backpropagation through time (BPTT) - Use unrolled representation - Run forward propagation - Run backward propagation - Update all weights - Weights are shared between time steps - Sum the contributions of each time step to the gradient - Inefficient - Batch helps, common but tricky to implement with variable-size models (good helper methods in PyTorch, non-issue with auto batching in DyNet) ## RNN: Acceptor Architecture - Only care about the output from the last hidden state - Train: supervised, loss on prediction ### RNN: Transducer Architecture Predict output for every time step ## Language Modeling - Input: $X = x_1, ..., x_n$ - Goal: compute p(X) - Bi-gram decomposition: $$p(X) = \prod_{i=1}^{n} p(x_i \mid x_{i-1})$$ With RNNs, can do non-Markovian models: $$p(X) = \prod_{i=1}^{n} p(x_i \mid x_1, ..., x_{i-1})$$ ## Language Modeling - Input: $X = x_1, ..., x_n$ - Goal: compute p(X) - Model: $$p(X) = \prod_{i=1}^{n} p(x_i \mid x_1, \dots, x_{i-1})$$ $$p(x_i \mid x_1, \dots, x_{i-1}) = O(\mathbf{s}_i) = O(R(\mathbf{s}_i, \mathbf{x}_{i-1}))$$ $$O(\mathbf{s}_i) = \operatorname{softmax}(s_i \mathbf{W} + \mathbf{b})$$ • Predict next token \hat{y}_i as we go: $$\hat{y}_i = \operatorname{argmax} O(\mathbf{s}_i)$$ ### RNN: Transducer Architecture - Predict output for every time step - Examples: - Language modeling ## RNN: Transducer Architecture $$X = \mathbf{x}_1, \dots, \mathbf{x}_n$$ $\mathbf{s}_i = R(\mathbf{s}_{i-1}, \mathbf{x}_i), i = 1, \dots, n$ $O(\mathbf{s}_i) = \operatorname{softmax}(\mathbf{s}_i \mathbf{W} + \mathbf{b})$ $\hat{y}_i = \operatorname{arg\ max} O(\mathbf{s}_i)$ $y_i $o(\mathbf{s}_i) ## RNN: Encoder Architecture - Similar to acceptor - Difference: last state is used as input to another model and not for prediction $$O(s_i) = s_i \rightarrow y_n = s_n$$ - Example: - Sentence embedding (like words, but sentences) ### Bidirectional RNNs - RNN decisions are based on historical data only - How can we account for future input? - When is it relevant? Feasible? #### Bidirectional RNNs - RNN decisions are based on historical data only - How can we account for future input? - When is it relevant? Feasible? - When all the input is available. Not for real-time input. - Probabilistic model, for example for language modeling: $$p(X) = \prod_{i=1}^{n} p(x_i \mid x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$ ## Deep RNNs Can also make RNNs deeper (vertically) to increase model capacity ## RNN: Generator - Special case of the transducer architecture - Generation conditioned on s_0 - Probabilistic model: ### RNN: Generator - Stop when generating the STOP token - During learning (usually): force predicting the annotated token and compute loss $$\mathbf{s}_{j} = R(\mathbf{s}_{j-1}, E(\mathbf{\hat{t}}_{j-1}))$$ $$O(\mathbf{s}_{j}) = \operatorname{softmax}(\mathbf{s}_{j}\mathbf{W} + \mathbf{b})$$ $$\mathbf{\hat{t}}_{j} = \operatorname{arg\,max} O(\mathbf{s}_{j})$$ $$|\mathbf{s}_{j}| = \operatorname{arg\,max} O(\mathbf{s}_{j})$$ ## Example: Caption Generation - Given: image I - Goal: generate caption - Set $s_0 = \text{CNN}(I)$ - Model: $$p(X | I) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1}, I)$$ "little girl is eating piece of cake." "baseball player is throwing ball in game." "woman is holding bunch of bananas." "a young boy is holding a baseball bat." "a cat is sitting on a couch with a remote control." "a woman holding a teddy bear in front of a mirror." Examples from Karpathy and Fei-Fei 2015 ## Sequence-to-Sequence - Connect encoder and generator - Many alternatives: - Set generator \boldsymbol{s}_0^d to encoder output \boldsymbol{s}_n^e - Concatenate s_n^e with each step input during generation - Examples: - Machine translation - Chatbots - Dialog systems - Can also generate other sequences – not only natural language! ## Sequence-to-Sequence $$X = x_1, \dots, x_n$$ $$\mathbf{s}_i^E = R_E(\mathbf{s}_{i-1}^E, \mathbf{E}_{[x_i]}), i = 1, \dots, n$$ $$\mathbf{c} = O_E(\mathbf{s}_n^E)$$ $$\mathbf{s}_j^D = R_D(\mathbf{s}_{j-1}^D, [\mathbf{E}_{[\hat{t}_{j-1}]}); \mathbf{c}])$$ $$O_D(\mathbf{s}_j^D) = \operatorname{softmax}(\mathbf{s}_j^D \mathbf{W} + \mathbf{b})$$ $$\hat{t}_j = \operatorname{arg\ max} O_D(\mathbf{s}_j^D)$$ $$\mathbf{s}_0^D = \operatorname{arg\ max} O_D(\mathbf{s}_j^D)$$ $$\mathbf{s}_0^D = \operatorname{arg\ max} O_D(\mathbf{s}_j^D)$$ # Sequence-to-Sequence Training Graph ## Long-range Interactions - Promise: Learn long-range interactions of language from data - Example: How can you not see this movie? You should not see this movie. - Sometimes: requires "remembering" early state - Key signal here is at s_1 , but gradient is at s_n ## Long-term Gradients - Gradient go through (many) multiplications - OK at end layers → close to the loss - But: issue with early layers - For example, derivative of tanh $$\frac{d}{dx}\tanh x = 1 - \tanh^2 x$$ - Large activation → gradient disappears (vanish) - In other activation functions, values can become larger and larger (explode) # Exploding Gradients - Common when there is no saturation in activation (e.g., ReLu) and we get exponential blowup because of product rule in backprop - Result: reasonable shortterm gradient, but bad long-term ones - Common heuristic: - Gradient clipping: bounding all gradients by maximum value ## Vanishing Gradients - Occurs when multiplying small values - For example: when tanh saturates - Mainly affects long-term gradients - Solving this is more complex ## Long Short-term Memory (LSTM) ## LSTM vs. Elman RNN ### LSTM - In seq-to-seq models, a single vector connects encoding and decoding - Any concern? - All the input string information must be encoded into a fixed-length vector - The decoder must recover all this information from a fixed-length vector - Attention relaxes the assumption that a single vector must be used to encode the input sentence regardless of length - Encode input sentence as a sequence of vectors (already doing this) - At each step, pick vector to use - But: discrete choice is not differentiable - Make the choice soft $$\mathbf{X} = x_1, \dots, x_n$$ $$\mathbf{s}_i^E = R_E(\mathbf{s}_{i-1}^E, \mathbf{E}_{[x_i]}), i = 1, \dots, n$$ $$\bar{\mathbf{c}}_i = O_E(\mathbf{s}_i^E)$$ $$\bar{\alpha}_i^j = \mathbf{s}_{j-1}^D \cdot \bar{\mathbf{c}}_i \text{ Attention function}$$ $$\alpha^j = \operatorname{softmax}(\bar{\alpha}_1^j, \dots, \bar{\alpha}_n^j)$$ $$\mathbf{c}_j = \sum_{i=1}^n \alpha_i^j \bar{\mathbf{c}}_i$$ $$\mathbf{s}_j^D = R(\mathbf{s}_{j-1}^D, [\mathbf{E}_{[\hat{t}_{j-1}]}; \mathbf{c}_j])$$ $$O_D(\mathbf{s}_j^D) = \operatorname{softmax}(\mathbf{s}_j^D \mathbf{W} + \mathbf{b})$$ $$\hat{t}_j = \operatorname{arg\,max} O_D(\mathbf{s}_j^D)$$ - Many variants of attention function - Dot product (previous slide) - MLP - Bi-linear transformation - Various ways to combine context vector into decoder computation - See <u>Luong et al. 2015</u> - Goal: use all GPU cores - Why is it hard? - Goal: use all GPU cores - Why is it hard? - Dependencies between time steps, so can't batch the computations of an example - Sequences have different lengths, so how to batch across examples? - Goal: use all GPU cores - Why is it hard? - Dependencies between time steps, so can't batch the computations of an example - Sequences have different lengths, so how to batch across examples? - Solutions - Only batch examples of the same length can get you some of the way - Batch examples regardless of length get more complex - Let's assume all examples are of the same length - So, it's easy! #### At each step: - State and input are packed into tensors across examples - Given as input to recurrence function - Which broadcasts the computation - What can we do if not all examples are the same length? - Make them the same length - Cost? Adding time steps wastes compute - Careful: must ignore any added results - Pad by adding input steps - Mask to ignore any new values (e.g., when computing loss or doing predictions) - For example: in transducers, loss values for padding elements should be multiplied by zero - Should still group by length to reduce cost