CS5740: Natural Language Processing

Language Models

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning,
Michael Collins, Luke Zettlemoyer, and Yejin Choi

an evolutionary biolog!
dea th

Better Language
Models and Their

M C
= o Z _ 9
=
= %fe <¢%
(0] > 5 8 .
o £ © s
Q o, 2 5 28
==) o © £
25 8°9% 92 E%Z
nmaeqrmgnma
Ue..L,Cm.mmU.U
O e e 5 5 5%
c @2 85 3 o O
» = S 8222
> s Ec 2 £ ETQ
c »cB5ESSZE S
e.mShbrC:p
e = 2 2 3 cc & c ¥
e hOIm = O <~ = o
aeg._nemnea
a daad.|.n|uW.T.
c dor_OdSSt
— e EZ2EDCc S 3
© m p..hL realm
T D +— o 0)
Q EeeIg2g5cs .
eamn_uarr..uw M
VueeuopS” =
5 2 82 2 E 0T :
—— aO..LanU A
WlCSlqu_

i dogsiaLicRBbe with th

tom of this and m

The :T:_
n they foulid a smalhya
frEwWas St

i .
Histugtt nefit of the ri

the federal go:
d for the be

vereig
ntrive

ere not very conceriied with states’ rights. The “foundir

the top
a?_muxm:ai?w: et

efields of Gettyshu d ARSI Sraiaicctic Perez stated, I £ AN
Hont ww.ﬁmmﬂ.wm on Police’ on the back. Th
overnment was taking far too much power awa s, that they weren’t sovereigr The C
of black-rimmet] The singer was also wearing a pair of black-r
ot wrong about that, bu
d the others then ventur

carding to anews release from Dep,
es rights But that's not What moes Petophs t5WiRS

; .
R P amaTK RS S BRI,

unknown to scien,
ce. Thes
e fou,

!
5&5@3?@:5&52&%&%&%«
hts B,

) READ PAPER

Overview

The language modeling problem
N-gram language models
Evaluation: perplexity

Smoothing
— Add-N
— Linear interpolation

The Language Modeling Problem

« Setup: Assume a (finite) vocabulary of words

V = {the, a, man, telescope, Beckham, two, Madrid, ...}

« We can construct an (infinite) set of strings
Vi = {the, a, the a, the fan,the man, the man with the telescope, ...}

given a training set of example sentences
* Problem: estimate a probability distribution over sentences

p(the) = 10712
Z p(aj) — 1 p(a) — 10—13
reVi p(the fan) = 1072
: p(the fan saw Beckham) =2 x 107°
and p(z) >0 for all z € V

p(the fan saw saw) = 10~ 1°

The Noisy Channel Model

» (Goal: predict sentence given acoustics

w* = arg max P(X | a)

* The noisy channel approach:

Language model:
Distributions over
w® = arg max P(X ‘ CL) sequences of words
X

(sentences)
Acoustic model:

Distributions over — ar'g m)z(xx P(CL ‘ X)P(X)/P(CL)

acoustic waves given

a sentence = arg m)?x P(a, ‘ X)P(X)

SUPER ANTICS

S p e e C h : _~ ‘ ‘ @- vo; SAVED My ‘FQ
Recognition SN 2

« Automatic Speech
Recognition (ASR)
 Audio in, text out

ET T T T T T T
10000E-
0 ot~ ~——
-10000E-
E 1 " Lo b v oo by o b v o by vu 1 " 1 L 1 L L
0780 1.00 1.20 1 1.40 1.60 1.80 2.00 2.20

« “Wreck a nice beach?”

« “Eye eight uh Jerry?”

Acoustically Scored Hypotheses

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807

the stations signs are indians and english -14815

ASR Noisy Channel System

Language Model

source
P(X)

» X

.

best _

Acoustic Model

channel
P(alX) - a

_/

X

decoder |

observed

a

argm)?XP(X | a) = argm)?XP(a | X)P(X)

Translation as Codebreaking

“Also knowing nothing official about, but having
guessed and inferred considerable about, the
powerful new mechanized methods in
cryptography—methods which | believe succeed
even when one does not know what language has
been coded—one naturally wonders if the
problem of translation could conceivably be
treated as a problem in cryptography. When |
look at an article in Russian, | say: ‘This is really
written in English, but it has been coded in some
strange symbols. | will now proceed to decode.’ ”

Warren Weaver
(1955:18, quoting a letter he wrote in 1947)

MT Noisy Channel System

Language Model Translation Model
source o channel
P(e) ' 1 P(fle)

L/\ - -
best observed
. decoder f

arg m?XP(e | f) = argmgxP(f | e)P(e)

Caption Generation Noisy Channel System

Language Model

Source

P(e)

» €

.

best _

Image Model

channel .
P(ile) !

_/

e

decoder

observed

l

argmax P(e | i) = argmax P(¢ | e)P(e)

earning Language Models

Assign useful probabilities P(X) to sentences X
— Input: many observations of training sentences X
— Qutput: system capable of computing P(X)

Probabilities should broadly indicate plausibility of sentences
— P(Isawavan) >> P(eyes awe of an)
— Not only grammaticality: P(artichokes intimidate zippers) = 0
— In principle, “plausible” depends on the domain, context, speaker...

One option: empirical distribution over training sentences...

c(r1...2,)
N

p(xy...xy) = for sentence X = x1...x,

earning Language Models

Assign useful probabilities P(X) to sentences X
— Input: many observations of training sentences X
— Qutput: system capable of computing P(X)

Probabilities should broadly indicate plausibility of sentences
— P(Isawavan) >> P(eyes awe of an)
— Not only grammaticality: P(artichokes intimidate zippers) = 0
— In principle, “plausible” depends on the domain, context, speaker...

One option: empirical distribution over training sentences...

c(r1...2,)
N

p(xy...xy) = for sentence X = x1...x,

Problem: does not generalize at all
Need to assign non-zero probability to previously unseen sentences!

Decompose Probability

* Assumption: word choice depends on
previous words only

p(X) = HZ?(% | 1, T 1)
i=1

e Better?

— Not really: last word still represents complete
event

=E=E=2=2=2X=
D

D
-

03

D
-

03

D
-

03

D
-

03

D
-

03

-
09

Markov Assumption

lish

lish
lish

lish
lish

lish)

this is really written in) =~
is really written in) &
really written in) ~

written in) ~

in) &

Unigram Models

« Simplest solution: unigrams n

p(xy...xp,) = Hp(xz)

« Generative process: pick a word, pick a word, ... until you pick STOP
 As a graphical model:

« Examples:

— [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]

— [thrift, did, eighty, said, hard, 'm, july, bullish]

— [that, or, limited, the]

- I

— [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed,
mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the,
further, board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes,
percent, a, they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute,
dentistry, pay, however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada,
the, so, workers, advancers, half, between, nasdaq]

« Big problem with unigrams: P(the the the the) >> P(l like ice cream)!

Bigram Models

« Condition on previous single word:

n
p(z1...2) = | [p(wilwi1)
« Generative process: i=1

— pick START, pick a word conditioned on previous one, repeat until to pick STOP
« Graphical Model:

* Any better?

— [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr.,
gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred,
fifty, five, yen]

— [outside, new, car, parking, lot, of, the, agreement, reached]

— [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,
seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of,
american, brands, vying, for, mr., womack, currently, sharedata, incorporated,
believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to,
conscientious, teaching]

— [this, would, be, a, record, november]
* But, what is the cost?

Approximating

Unigram

e To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

e Every enter now severally so, let

e Hill he late speaks; or! a more to leg less first you enter

e Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile
like

Bigram

e What means, sir. I confess she? then all sorts, he is trim, captain.

eWhy dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first
gentleman?

eEnter Menenius, if it so many good direction found’st thou art a strong upon command
of fear not a liberal largess given away, Falstaff! Exeunt

Trigram

e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

e This shall forbid it should be branded, 1f renown made it empty.

e Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sadness of parting, as they say;,
'tis done.

Quadrigram

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

e Will you not tell me who I am?

e [t cannot be but so.

e Indeed the short and the long. Marry, ’tis a noble Lepidus.

N-gram Model Decomposition

* k-gram models (k > 1): condition on k — 1 previous words
n

plxy...xp,) = H q(Ti|Ti— (k1) - - Ti—1)
i=1
where x; € VU{STOP} and z_pyp... 20 = *

« Example: tri-gram (3-gram)
p(the dog barks STOP) =

qg(the|*, *) x q(dog|*, the) x q(barks|the, dog) x q(STOP|dog, barks)

« Learning: estimate the distributions

Well Defined Distributions

Proof for Unigrams

« Simplest case: unigrams
p(xy...2,) = Hp(ajz

« (Generative process: pick a word, p|ck a word, ... until you pick STOP
« For all strings X (of any length): p(X) = 0
« Claim: the sum over string of all lengthsis 1: Y.y p(X) = 1

1) Sr0=33 ple...)

n=1x1...xn

2) Y plarean) =) Hp i) =) p(a1) X o X plan)

xl...xn 33'1 xn ’Z,_

= Zp(xl) X e X Zp(iﬁn) = (1 —ps)" 'ps where p; = p(STOP)

(2) S p(X) =S (1= pa)* pe = s S (A —po)" L =po— =1
X n=1 n=1 1 (1 pS)

Recurrent neural network languages model are surprisingly not
necessarily well defined distributions! (Chen et al. 2018)

http://aclweb.org/anthology/N18-1205.pdf

N-gram Model Parameters

« The parameters of an n-gram model:
— Maximum likelihood estimate: relative frequency

c(w) c(v,w) c(u, v, w)

qur(w) = () ; QML(w’U) — W7 QML(’LU\U,’U) —

where c is the empirical counts on a training set

« General approach
— Take a training set D and a test set D’
— Compute an estimate of the g’s from D
— Use it to assign probabilities to other sentences, such as those in D’

198015222 the first
194623024 the same 14112454

168504105 the following door|the) =
158562063 the world a the) 2313581162

14112454 the door — 0.0006

23135851162 the *

Training Counts

ORI

Higher Order N-grams?

Please C
Please C

198015222 the first

ose t
ose t

ne door

ne first window on the left

197302 close the window 3380 please close the door

194623024 the same 191125 close the door 1601 please close the window
168504105 the following 152500 close the gap 1164 please close the new
158562063 the world 116451 close the thread 1159 please close the gate
87298 close the deal .

14112454 the door - 0 please close the first

23135851162 the *

13951 please close the *

Regular Languages?

* N-gram models are (weighted) regular
languages
— Linguists argue that language isn't regular.

 Long-distance effects: “The computer which | had
just put into the machine room on the fifth floor
”?danced/crashed??

 Recursive structure

— Why CAN we often get away with n-gram
models?

Measuring Model Quality

* The goal isn't to pound out fake sentences!

— (Generated sentences get “better” as we increase the
model order

— More precisely: using ML estimators, higher order
always gives better likelihood on train, but not test

— Will our model prefer good sentences to bad ones?
— Bad = ungrammatical!
— Bad = unlikely

— Bad = sentences that our acoustic model really likes
but aren't the correct answer

Measuring Model Quality

* The Shannon Game: / grease 0.5 |

— How well can we predict the next word? sauce 0.4
dust 0.05
When | eat pizza, | wipe off the <
Many children are allergic to mice 0.0001
| saw a — Claude Shannon
_the 1e-100

— Unigrams are terrible at this game. (Why?)

A better model of a text...

— Is one which assigns a higher probability to the word that
actually occurs

Measuring Model Quality

» For every sentences XW (i = 1..m) we
can estimate its probability p(X)

* A natural measure of model quality:

HP(X)

* The higher this quantity Is, the better we
model unseen sentences

Perplexity

Let M be the number of words in the corpus
The average log probability S:

1
il 0y = (4)
M10g2 Zl |1p (X ZEllogﬂn (X))

The perplexity Is:

a1
Where: PP =2

1 m
Y Zlong(X()
i=1

Perplexity

PP = 2_l I = %Zlong(X(i))

1=1

Perplexity is the inverse probability of the
test set normalized by the number of words

f we ever give a test n-gram zero probability
- perplexity will be infinity
— We should avoid this

Perplexity

PP =97 = > logy p(X)

1=1

« Under a uniform distribution the perplexity will be the
vocabulary size:

— Let’'s suppose M sentences consisting of random digits

— What is the perplexity of this data according to a model
that assign P=1/10 to each digit?

1 x (1))

PP :Q_ﬁ e logy (75)
:2_ﬁ i1 |X(i)| log, %

1 —1
—9— logs 15 — 2~ log, 10 — 10

Lower perplexity = better model

Training 38 million words, test 1.5 million words, 20k
word types WSJ

Perplexity

Important notes:

— It's easy to get bogus perplexities by having bogus probabilities
that sum to more than one over their event spaces.

— Generally, perplexity captures the effective vocabulary size
under the model, so it's important to keep it fixed

*With Good-Turing smoothing

Measuring Model Quality: Speech

insertions + deletions + substitutions

Word Error Rate (WER)

true sentence size

Correct answer: Andy saw a part of the movie

[+ *)

Recognizer output: And he saw apart of the movie

The “right” measure: ﬁ‘

— Task error driven WER: 4/7
— For speech recognition =57%
— For a specific recognizer!

Common issue: intrinsic measures like perplexity are easier to use,
but extrinsic ones are more credible

Sparsity in Language Models

Problems with n-gram models: _
— New words appear all the time: § . e R
« Synaptitute c o= o Unigrams
« 132,701.03 § 04 EID O Bigrams |
 Multidisciplinarization w02 -
« Post-truth 0d | | | | |
— NeW ﬂ—grams: even more Often 0 200000 400000 600000 800000 1000000
Zipf’S Law Number of Words

— Broadly: most word types are rare ones

— Rank word types by token frequency - Frequency inversely

proportional to rank
« The most frequent word will occur approximately twice as often as the second
most frequent word, three times as often as the third most frequent word, etc.

— Only 135 items account for half the Brown corpus
— Not special to language: randomly generated character strings have
this property (try it!)
This is particularly problematic when...
— Training set is small (does this happen for language modeling?)
— Transferring domains: e.g., newswire, scientific literature, Twitter

/eroes

* Training set: * Test set:

... denied the allegations .. denied the offer
. ... denied the loan
... denied the reports

... denied the claims
... denied the request

P(“offer” | denied the) = 0

« A single n-gram with zero probability
— Mean that we will assign O probability to the test set!

* And hence we cannot compute perplexity (can't
divide by 0)!

Parameter Estimation

« The parameters of an n-gram model:
— Maximum likelihood estimate: relative frequency

c(w) c(v,w)

qur(w) = () qur(w|v) = W, qur(w|u,v) = clu, v, w)

where ¢ is the empirical counts on a training set
Maximum likelihood estimates won't get us very far
Need to smooth these estimates
General method (procedurally)
— Take your empirical counts
— Modify them in various ways to improve estimates
General method (mathematically)
— Sometimes can give estimators a formal statistical interpretation
— Approaches that are mathematically obvious do not always work best

(o)

Smoothing

« We often want to make estimates from sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims 0 2
) c X
1 request © O B
© 5 <
7 total 5 ¢ 2

« Smoothing flattens spiky distributions so they generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

Ll

« Very important all over NLP (and ML more generally), but easy to do badly!

allegations
reports

Ims
charges
motion
benefits

cla
request

Add-one Estimation

Also called Laplace smoothing

Pretend we saw each word one more time than we
did @

Just add one to all the counts!

MLE estimate: c(zi_1,x;)

6(337;_1)

Pyvre(x; | xi—1) =

Add-1 estimate:

c(xi_1,x;) +1

Paga-1(x; | zi—1) = @)+ V

More General Formulation

e Add-K: c(ri—1,zi) + k

(xz 1) -+]CV

Pagax(x; | ©;-1) =

c(ri—1,:) + m%

C(CEi_l) +m

Pagax(x; | x;21) =

» Unigram Prior Smoothing:
C(.CE‘Z'_l, .CIZZ) -+ mP(ZEZ)

Prgax(x; | xi—1) = (@) £ m

Berkeley Restaurant Corpus

can you tell me about any good cantonese
restaurants close by

mid priced thai food is what i'm looking for
tell me about chez panisse

can you give me a listing of the kinds of food
that are available

I'm looking for a good place to eat breaktast
when is caffe venezia open during the day

e From 9222 sentences

Raw Bigram Counts

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 I 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 151 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

 Normalize by unigrams:

Result:

Bigram Probabillities

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002 03310 0.0036 | O 0 0 0.00079
want 0.0022 |0 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054| 0.0011
to 0.00083 | 0 0.0017 | 0.28 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.002710.056 |0
chinese || 0.0063 | O 0 0 0 0.52 10.0063 |0
food 0014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch || 0.0059 | O 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 | O 0 0 0 0

Add-1 on the Berkeley Restaurant
Corpus

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7/ 7/ 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 | 83 2 1
food 16 | 1 16 1 2 3 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Add-1 Smoothed Bigrams

Paga-1(x; | xi—1) =

c(ri—1,x;) +1

c(ri—1) +V

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025 | 0.0025 0.00025(0.00025| 0.00025| 0.00075
want 0.0013 0.00042(0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078| 0.00026| 0.0013 0.18 0.00078| 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062 | 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 0.00056| 0.00056
spend 0.0012 0.00058| 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

Reconstituted Counts
C(CCZ' 1, CEZ) +1

Paga1(x; | 1) =

(xz 1) + V
) (c(ziz1, i) + 1)e(wi—1)

(i1, ;) =

(xz 1) —I_ V

1 want to eat chinese | food| lunch| spend

1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.:2 0.39 238 0.78 27 24 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

Original vs. Add-1 (reconstituted) Bigram Counts

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 1 0
food 151 0 15 0 1 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
1 want | to eat chinese | food| Ilunch| spend
1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1:2 0.39 238 0.78 21 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 15 0.34
chinese | 02 | 0.098| 0.098| 0098| 0.098 02 | 0.098
food 6.9 0.43 6.9 0.43 0.86 : 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 038 0.19 0.19
spend 032 9.6 0.32 0.16 0.16 0.16| 0.16 0.16

Add-1 1s a Blunt Instrument

« S0 Add-1 isn’'t used for N-grams:
— We'll see better

 But Add-1 i1s used to smooth other NLP
models
— For text classification

— In domains where the number of zeroes isn't
SO big

Add-1 Smoothing

» Classic solution: add counts (Laplace smoothing)

c(w) +9 _ c(w)+ 46
Dooe(w)+46) () +oV

— Most comment: add-1 smoothing

Parga-s(w) =

« For a bigram distribution, can add counts shaped
ike the unigram:

c(v,w) 4+ dqprr,(w) ~ c(v,w) + dPure(w)

Pyni-s(w|v) = Zw’ (c(v,w") + dqarr, (W) - c(v)+ 46

* Problem: works quite poorly!

Linear Interpolation

* Problem: MLE is supported by few counts
e (lassic solution: mixtures of related, denser histories:

PA(U)‘U, ’U) —)ngMLE(w]u, U) -+)\QPMLE(’LU‘U) —+)\1PMLE(IU)

* |s this a well defined distribution?

Linear Interpolation

* Problem: MLE is supported by few counts
e (lassic solution: mixtures of related, denser histories:

PA(U)‘U, ’U) —)ngMLE(w]u, U) -+)\QPMLE(’LU‘U) —+)\1PMLE(IU)

« |s this a well defined distribution?
— Yes, ifall 4, = 0 and they sum to 1

* The mixture approach tends to work better than Add-6
— Can flexibly include multiple back-off contexts
— (Good ways of learning the mixture weights with EM (later)
— But: not entirely clear why it works so much better

« All the details you could ever want: [Chen and Goodman, 98]

Estimating Lamlbdas

* Use a validation corpus

Development Held-out Test
Data Data

* Choose As to maximize the probability of

validation data:
— Fix the N-gram probabilities (on the training data)

— Then search for As that give highest probability to
validation set:

l0g P(21,. .., Ty | A1y o oy AR) :Z|09P/\($z‘ | zi—1)

Advanced smoothing Algorithms

 [ntuition: Use the count of things we've seen
once

— To help estimate the count of things we've never
seen

* Used by many smoothing algorithms
— Good-Turing

— Kneser—Ney \ Invented during WWII by Alan Turing and

— Also: Witten-Bell later published by Good. Frequency
estimates were needed for Enigma code-

breaking effort

What Actually Works??

« Trigrams and beyond:
— Unigrams, bigrams generally useless
— Trigrams much better (when there’s enough data)
— 4-, 5-grams really useful in MT, but not so much for speech

» Discounting

— Absolute discounting, Good-Turing, held-out estimation, Witten-
Bell, etc...

« See [Chen+Goodman] reading for tons of graphs...

Data vs. Method?

* Having more data is better...

10 72
9.5 ~+ 100,000 Katz
9 - = 100,000 KN
8.5 ottt " | 1,000,000 Katz
? 8 - ~— 1,000,000 KN
E 7.5 - ~+ 10,000,000 Katz
7 - 10,000,000 KN
6.5 - — all Katz
6 - —all KN
5.5

1 2 3 4 5 6 7 8 9 10 20
n-gram order

* ... but sois using a better estimator
* Anotherissue: N > 3 has huge costs

Practical Issues

* We do everything in log space
— Avoid underflow
— (also adding is faster than multiplying)

— (though log can be slower than multiplication)
* (but, you just said adding is faster w)

log(p; x p, x p3x p,)=log p, +1log p, +log p; +1log p,

Welb-scale N-grams

All Our N-gram are Belong to You
Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

their computing resources, to play together. That's why we decided to share this enormous dataset
with everyone. We processed 1,024,908,267,229 words of running text and are publishing the
counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are
13,588,391 unique words, after discarding words that appear less than 200 times.

Google N-grams

serve as the incoming 92

serve as the incubator 99
serve as the independent 794
serve as the index 223

serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Welb-scale N-grams

* How to deal with, e.g., Google N-gram corpus
* Pruning
— Only store N-grams with count > threshold.

* Remove singletons of higher-order n-grams
— Entropy-based pruning (more advanced)

« Efficiency
— Efficient data structures like tries
— Bloom filters: approximate language models

— Store words as indexes, not strings

» Use Huffman coding to fit large numbers of words into two
bytes

— Quantize probabilities (4-8 bits instead of 8-byte float)

Even More Data!

Tons of data closes gap, for extrinsic MT evaluation

044 - P
+0.51BP/X2, ., . * "
;3‘? +0.15BP/x2
42 & * +0.39BP/x2]
LIJ x‘/,)(':"/./.
E)j 04 - x*x///.V‘ - |
© «t0.70BP/x2
s .
2 0.38 ++0.62BP/x2 |
o ra target KN —+—
- +ldenews KN -
0.36 ‘/ e +webnews KN - -
EI target SB - e
~+0.66BP/x2 +ldcnews SB ---=--
0.34 | +webnews SB -~ - _
. L . M . Ll . +.\Ne|b SB ...|
10 100 1000 10000 100000 1e+06

LM training data size in million tokens

http://www.aclweb.org/anthology/D07-1090.pdf

http://www.aclweb.org/anthology/D07-1090.pdf

Handling Unknown Words

 |f we know all the words in advance
— Vocabulary V is fixed
— Closed vocabulary task

« Often, we don’t know this
— Out Of Vocabulary = OOV words
— Open vocabulary task

 |nstead: create an unknown word token <UNK>

— Training of <UNK> probabilities
« Create a fixed lexicon L of size V (e.g., rare words are not in L)

« At text normalization phase, any training word not in L changed to
<UNK>

* Now we train its probabilities like a normal word
— At decoding time
 |f text input: Use UNK probabilities for any word not in training

Case Study: Language |dentitication

« How can we tell what language a document is in?

The 38th Parliament will meet on La 38e Iégislature se réunira a 11 heures le
Monday, October 4, 2004, at 11:00 a.m. lundi 4 octobre 2004, et la premiere affaire
The first item of business will be the a l'ordre du jour sera I’ élection du

election of the Speaker of the House of président de la Chambre des communes.
Commons. Her Excellency the Governor Son Excellence la Gouverneure générale
General will open the First Session of ouvrira la premiéere session de la 38e

the 38th Parliament on October 5, 2004, |égislature avec un discours du Trbne le
with a Speech from the Throne. mardi 5 octobre 2004.

« How to tell the French from the English?
— Treat it as word-level text categorization?

— Overkill, and requires more training data than you really need
You don'’t actually need to know about words!

« QOption: build a character-level language model

2UU@WVO 0TABEPOTNTAC KAl AVATITUENG
Patto di stabilita e di crescita

Naive-Bayes Models

« (Generative model: pick a topic, then generate a document
using a language model for that topic

« Naive-Bayes assumption:

— All words are independent given the topic.
| X

p(y, X) = q(y) H q(z; | y)

« Compare to a unigram language model:

p(x1...x,) = Hp(:zzz)

Class-Conditional LM

Can add a topic variable to richer language models
| X|

p(y, X) = q(y) H q(z; | Y, 1)

Could be characters instead of words, used for language ID

Could sum out the topic variable and use as a language
model

How might a class-conditional n-gram language model
behave differently from a standard n-gram model?

EXTRAS

Notation: N. = Frequency of
frequency c

* N, = the count of things we've seen c times
« Sam | am | am Sam | do not eat

I 3
sam 2 N, =3
am 2 N, = 2
do 1 N, = 1
not 1
eat 1

Good-Turing Smoothing Intuition

You are fishing (a scenario from Josh Goodman), and
caught:

— 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
How likely is it that next species is trout”

— 1/18

How likely is it that next species is new (i.e. catfish or bass)

— Let’s use our estimate of things-we-saw-once to estimate the
new things.

— 3/18 (because N,=3)
Assuming so, how likely is it that next species is trout?

— Must be less than 1/18
— How to estimate?

Good-Turing Calculations

" (thi ' c+1)N
P (things with zero frequency) = Ny ¥ = ()N .,

N N

C

Unseen (bass or catfish)
= ¢c=0:
= MLEp =0/18=0
= P'57 (unseen) = N¢y/N = 3/18

Seen once (trout)
= c=1
= MLE p = 1/18
= C*(trout) =2 * Ny/N; =2 *1/3 = 2/3
= P’sr(trout) = 2/3 /18 = 1/27

Good-Turing Complications

 Problem: what about
‘the”? (say c=4417)
— For small k, N, > N, +1

— For large k, too jumpy,
zeroes wreck estimates

— S|mr3le Good-Turing
and Sampson]:

replace empirical N

« With

a best-fit power law once

counts get unreliab

e

e __
P

Good-Turing Numbers

« Numbers from Church

and Gale (1991)

e 22 million words of AP

Newswire

o (c+1)N

c+1

N

C

e |t sure looks like
c* =(c-.75)

Count | Good Turing c*
C

0 .0000270
1 0.446

2 1.26

3 2.24

4 3.24

5 4.22

6 5.19

7 6.21

8 7.24

9 8.25

Absolute Discounting

* |dea: observed n-grams occur more in training than they will |later:

Count in 22M Words Future c* (Next 22M)
1 0.448

2 1.25

3 2.24

4 3.23

« Absolute Discounting (Bigram case)
— No need to actually have held-out data; just subtract 0.75 (or some d)

c*(v,w)

c(v)

c*(v,w) = c(v,w) — 0.75 and g(w|v) =
— But, then we have “extra” probability mass

ot =1- 505

w
— Question: How to distribute a between the unseen words?

Katz Backoft

= Absolute discounting, with backoff to unigram estimates

c'(v,w) =clv,w) =8 a@w=1-) C*(EEJU;U)

w
» Define seen and unseen bigrams:

A) ={w : c(v,w) >0} B(v) ={w: c(v,w) =0}
. lgli%vrvémbgcmﬁ to{mai:i(mum) likelihood unigram estimates for unseen

- CZ’U’;“’ If we A(v)
\ a(v) X = anrL(w) If w e B(v)

eB(v) dM L (w/)

= (Can consider hierarchical formulations: trigram is recursively
backed off to Katz bigram estimate, etc

= (Can also have multiple count thresholds (instead of just O and >0)
= Problem?

= Unigram estimates are bad predictors

qo(w|v) = <

Kneser-Ney smoothing

« Better estimate for probabilities of lower-order
unigrams!

— Shannon game: | can’t see without my
reading__ fglrzeso 7

— “Francisco” is more common than “glasses”

— ... but “Francisco” always follows “San”

* |Instead of P(w): “How likely is w”

* Peontinuation(W): "How likely is w to appear as a novel
continuation?
— For each word, count the number of bigram types it
completes

— Every bigram type was a novel continuation the first time it
was seen

Peontmvuarion (W) & |{Wi—1 re(w,w)> O}|

Kneser-Ney smoothing

 How many times does w appear as a
novel continuation:

Peonrmvuarion (W) * |{Wi—1 e(W,w) > O}|

* Normalized by the total number of word
bigram types

{ww)ic(w,,w;) >0}

‘{wl._1 c(w_,w)> O}‘

‘{(wj_l,w].) re(w,_,w;)> O}‘

Feonrmvuarion (W) =

Kneser-Ney smoothing

« A frequent word (Francisco) occurring in only one
context (San) will have a low continuation probability

* Replace unigram in discounting:

max(c(w,_,w,)—d,0)

c(w,_,)

PKN (Wi l Wi—l) = + A(M}i—l)PCONTINUATION (Wl)

A is a normalizing constant; the probability mass we've discounted

Alw,_)= d ‘{w ce(w,_,w)> O}‘

/ c(w,_,)
. . The number of word types that can follow w;_4
the normalized discount = # of word types we discounted
= # of times we applied normalized discount

Kneser-Ney smoothing: Recursive

—ormulati

i1
Py Iwi_,00) = =
v (Winst)

Cxn (®) =+

max(cy (W, ;) —d,0)

On

I—

+)L(ijm)Py (w; | Wz-1+2)

count(®) for the highest order

continuationcount(®) for lower order

Continuation count = Number of unique single

word contexts for e

Smoothing at Web-scale

“Stupid backoff” (Brants et al. 2007)
* No discounting, just use relative frequencies

count(w; : :
(”‘*1) if count(w;_,)>0
Sw, Iw™.)=4 count(w,,,
0.4S(w, Iwi,, otherwise
count(w:,
S(w,) = ,)
N

'The name originated at a time when we thought that such
a simple scheme cannot possibly be good. Our view of the
scheme changed, but the name stuck.

