
Language Models

Instructor: Yoav Artzi

CS5740: Natural Language Processing

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning,
Michael Collins, Luke Zettlemoyer, and Yejin Choi

Overview

• The language modeling problem
• N-gram language models
• Evaluation: perplexity
• Smoothing
– Add-N
– Linear interpolation

The Language Modeling Problem
• Setup: Assume a (finite) vocabulary of words

• We can construct an (infinite) set of strings

• Data: given a training set of example sentences
• Problem: estimate a probability distribution over sentences

• Question: why would we ever want to do this?

V† = {the, a, the a, the fan, the man, the man with the telescope, ...}

X

x�V†

p(x) = 1

and p(x) � 0 for all x ⇥ V†

p(the) = 10�12

p(a) = 10�13

p(the fan) = 10�12

p(the fan saw Beckham) = 2⇥ 10�8

p(the fan saw saw) = 10�15

. . .

The Noisy Channel Model

• Goal: predict sentence given acoustics

• The noisy channel approach:

Acoustic model:
Distributions over

acoustic waves given
a sentence

Language model:
Distributions over

sequences of words
(sentences)

w⇤ = argmax
X

P (X | a)

w⇤ =argmax
X

P (X | a)

= argmax
X

P (a | X)P (X)/P (a)

= argmax
X

P (a | X)P (X)

Speech
Recognition

• Automatic Speech
Recognition (ASR)

• Audio in, text out

• “Wreck a nice beach?”
– “Recognize speech”

• “Eye eight uh Jerry?”
– “I ate a cherry”

Acoustically Scored Hypotheses

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815

ASR Noisy Channel System

source
𝑃(𝑋)

𝑋 𝑎

decoder
observed

𝑋 𝑎
best

channel
𝑃(𝑎|𝑋)

Language Model Acoustic Model

argmax
X

P (X | a) = argmax
X

P (a | X)P (X)

Translation as Codebreaking
“Also knowing nothing official about, but having
guessed and inferred considerable about, the
powerful new mechanized methods in
cryptography—methods which I believe succeed
even when one does not know what language has
been coded—one naturally wonders if the
problem of translation could conceivably be
treated as a problem in cryptography. When I
look at an article in Russian, I say: ‘This is really
written in English, but it has been coded in some
strange symbols. I will now proceed to decode.’ ”

Warren Weaver
(1955:18, quoting a letter he wrote in 1947)

MT Noisy Channel System

source
𝑃(𝑒)

𝑒 𝑓

decoder
observed

𝑒 𝑓
best

channel
𝑃(𝑓|𝑒)

Language Model Translation Model

argmax
e

P (e | f) = argmax
e

P (f | e)P (e)

Caption Generation Noisy Channel System

source
𝑃(𝑒)

𝑒 𝑖

decoder
observed

𝑒 𝑖
best

channel
𝑃(𝑖|𝑒)

Language Model Image Model

argmax
e

P (e | i) = argmax
e

P (i | e)P (e)

Learning Language Models
• Goal: Assign useful probabilities 𝑃(𝑋) to sentences 𝑋

– Input: many observations of training sentences 𝑋
– Output: system capable of computing 𝑃(𝑋)

• Probabilities should broadly indicate plausibility of sentences
– 𝑃(I saw a van) >> 𝑃(eyes awe of an)
– Not only grammaticality: 𝑃(artichokes intimidate zippers) » 0
– In principle, “plausible” depends on the domain, context, speaker…

• One option: empirical distribution over training sentences…

• Problem: does not generalize at all
• Need to assign non-zero probability to previously unseen sentences!

p(x1 . . . xn) =
c(x1 . . . xn)

N
for sentence X = x1 . . . xn

Learning Language Models
• Goal: Assign useful probabilities 𝑃(𝑋) to sentences 𝑋

– Input: many observations of training sentences 𝑋
– Output: system capable of computing 𝑃(𝑋)

• Probabilities should broadly indicate plausibility of sentences
– 𝑃(I saw a van) >> 𝑃(eyes awe of an)
– Not only grammaticality: 𝑃(artichokes intimidate zippers) » 0
– In principle, “plausible” depends on the domain, context, speaker…

• One option: empirical distribution over training sentences…

• Problem: does not generalize at all
• Need to assign non-zero probability to previously unseen sentences!

p(x1 . . . xn) =
c(x1 . . . xn)

N
for sentence X = x1 . . . xn

Decompose Probability

• Assumption: word choice depends on
previous words only

• Better?
– Not really: last word still represents complete

event

p(X) =
nY

i=1

p(xi | x1, . . . , xi�1)
<latexit sha1_base64="sCeZ3FmsALDdFwlJrQOkAZaThRY=">AAACUHicbVDLbhMxFL0T+mLKI4UlG6tRpVRqozEgFRaVqrJh2UqERsoMI4/Haa36JdsDjaz5EL6GbVmz4lNYUScNUptyJMtH59yHfSojuPNZ9jvpPFpZXVvfeJxuPnn67Hl368VnpxtL2ZBqoe2oIo4JrtjQcy/YyFhGZCXYWXX5YeaffWXWca0++alhhSTnik84JT5KZfeN6Y920SHKjdV1Gfghbr8oZPpXJUe55DW6KvFeXmvv9iINfB+3u2W3lw2yOdBDghekBwuclFvJWhxBG8mUp4I4N8aZ8UUg1nMqWJvmjWOG0EtyzsaRKiKZK8L8dy3aiUqNJtrGozyaq3c7ApHOTWUVKyXxF27Zm4n/9Wo3G7i03U/eFYEr03im6O3ySSOQ12gWH6q5ZdSLaSSEWh7fj+gFsYT6GHKa5pYp9o1qKYmqQ07bMS5CyK1EPdy2aUwOL+f0kAxfD94PstO3vaPjRYQb8Aq2oQ8YDuAIPsIJDIHCd/gB1/Az+ZX8Sf52ktvSfze8hHvopDfBj7E1</latexit><latexit sha1_base64="sCeZ3FmsALDdFwlJrQOkAZaThRY=">AAACUHicbVDLbhMxFL0T+mLKI4UlG6tRpVRqozEgFRaVqrJh2UqERsoMI4/Haa36JdsDjaz5EL6GbVmz4lNYUScNUptyJMtH59yHfSojuPNZ9jvpPFpZXVvfeJxuPnn67Hl368VnpxtL2ZBqoe2oIo4JrtjQcy/YyFhGZCXYWXX5YeaffWXWca0++alhhSTnik84JT5KZfeN6Y920SHKjdV1Gfghbr8oZPpXJUe55DW6KvFeXmvv9iINfB+3u2W3lw2yOdBDghekBwuclFvJWhxBG8mUp4I4N8aZ8UUg1nMqWJvmjWOG0EtyzsaRKiKZK8L8dy3aiUqNJtrGozyaq3c7ApHOTWUVKyXxF27Zm4n/9Wo3G7i03U/eFYEr03im6O3ySSOQ12gWH6q5ZdSLaSSEWh7fj+gFsYT6GHKa5pYp9o1qKYmqQ07bMS5CyK1EPdy2aUwOL+f0kAxfD94PstO3vaPjRYQb8Aq2oQ8YDuAIPsIJDIHCd/gB1/Az+ZX8Sf52ktvSfze8hHvopDfBj7E1</latexit><latexit sha1_base64="sCeZ3FmsALDdFwlJrQOkAZaThRY=">AAACUHicbVDLbhMxFL0T+mLKI4UlG6tRpVRqozEgFRaVqrJh2UqERsoMI4/Haa36JdsDjaz5EL6GbVmz4lNYUScNUptyJMtH59yHfSojuPNZ9jvpPFpZXVvfeJxuPnn67Hl368VnpxtL2ZBqoe2oIo4JrtjQcy/YyFhGZCXYWXX5YeaffWXWca0++alhhSTnik84JT5KZfeN6Y920SHKjdV1Gfghbr8oZPpXJUe55DW6KvFeXmvv9iINfB+3u2W3lw2yOdBDghekBwuclFvJWhxBG8mUp4I4N8aZ8UUg1nMqWJvmjWOG0EtyzsaRKiKZK8L8dy3aiUqNJtrGozyaq3c7ApHOTWUVKyXxF27Zm4n/9Wo3G7i03U/eFYEr03im6O3ySSOQ12gWH6q5ZdSLaSSEWh7fj+gFsYT6GHKa5pYp9o1qKYmqQ07bMS5CyK1EPdy2aUwOL+f0kAxfD94PstO3vaPjRYQb8Aq2oQ8YDuAIPsIJDIHCd/gB1/Az+ZX8Sf52ktvSfze8hHvopDfBj7E1</latexit>

Markov Assumption

p(english | this is really written in) ⇡
p(english | is really written in) ⇡
p(english | really written in) ⇡
p(english | written in) ⇡
p(english | in) ⇡
p(english)

<latexit sha1_base64="b396oRL7mLVbzp3hq35wFDcBluQ=">AAADZXicpVJNb9QwEHU2UEqAfgDiwoERK1B7WSUIqeVWwQGORWJppXVUOc7srlXbiewJ7SrKX+LXcOEAZ34G3o8DbBFCdGRLT29m3lhvXNRaeUrTr1EvvnFz49bm7eTO3Xtb2zu79z/6qnESh7LSlTsthEetLA5JkcbT2qEwhcaT4vzNPH/yCZ1Xlf1AsxpzIyZWjZUUFKiz3ejtc6j3OOEltWgnYeK0A25UCUuOpspDOEFT6xlcOEWEFpTt9oGLunbVJQBwnvxd5voK12z/74f/Q/1+SMDZTj8dpIuAqyBbgT5bxXGwfoOXlWwMWpJaeD/K0pryVjhSUmOX8MZjLeS5mOAoQCsM+rxdrLyDZ4EpYVy5cC3Bgv21oxXG+5kpQqURNPXruTn5x1zp54Jr02l8mAcr6iZYKJfDx40GqmD+p6BUDiWF7ZRKyGC0kiCnwglJ4eclCXdo8UJWxghbtlx2oyxvW+4M9LOuS4Jz2bpPV8HwxeDVIH3/sn/0emXhJnvMnrI9lrEDdsTesWM2ZDL6HH2JvkXfez/irfhh/GhZ2otWPQ/YbxE/+QnR+BSP</latexit><latexit sha1_base64="b396oRL7mLVbzp3hq35wFDcBluQ=">AAADZXicpVJNb9QwEHU2UEqAfgDiwoERK1B7WSUIqeVWwQGORWJppXVUOc7srlXbiewJ7SrKX+LXcOEAZ34G3o8DbBFCdGRLT29m3lhvXNRaeUrTr1EvvnFz49bm7eTO3Xtb2zu79z/6qnESh7LSlTsthEetLA5JkcbT2qEwhcaT4vzNPH/yCZ1Xlf1AsxpzIyZWjZUUFKiz3ejtc6j3OOEltWgnYeK0A25UCUuOpspDOEFT6xlcOEWEFpTt9oGLunbVJQBwnvxd5voK12z/74f/Q/1+SMDZTj8dpIuAqyBbgT5bxXGwfoOXlWwMWpJaeD/K0pryVjhSUmOX8MZjLeS5mOAoQCsM+rxdrLyDZ4EpYVy5cC3Bgv21oxXG+5kpQqURNPXruTn5x1zp54Jr02l8mAcr6iZYKJfDx40GqmD+p6BUDiWF7ZRKyGC0kiCnwglJ4eclCXdo8UJWxghbtlx2oyxvW+4M9LOuS4Jz2bpPV8HwxeDVIH3/sn/0emXhJnvMnrI9lrEDdsTesWM2ZDL6HH2JvkXfez/irfhh/GhZ2otWPQ/YbxE/+QnR+BSP</latexit><latexit sha1_base64="b396oRL7mLVbzp3hq35wFDcBluQ=">AAADZXicpVJNb9QwEHU2UEqAfgDiwoERK1B7WSUIqeVWwQGORWJppXVUOc7srlXbiewJ7SrKX+LXcOEAZ34G3o8DbBFCdGRLT29m3lhvXNRaeUrTr1EvvnFz49bm7eTO3Xtb2zu79z/6qnESh7LSlTsthEetLA5JkcbT2qEwhcaT4vzNPH/yCZ1Xlf1AsxpzIyZWjZUUFKiz3ejtc6j3OOEltWgnYeK0A25UCUuOpspDOEFT6xlcOEWEFpTt9oGLunbVJQBwnvxd5voK12z/74f/Q/1+SMDZTj8dpIuAqyBbgT5bxXGwfoOXlWwMWpJaeD/K0pryVjhSUmOX8MZjLeS5mOAoQCsM+rxdrLyDZ4EpYVy5cC3Bgv21oxXG+5kpQqURNPXruTn5x1zp54Jr02l8mAcr6iZYKJfDx40GqmD+p6BUDiWF7ZRKyGC0kiCnwglJ4eclCXdo8UJWxghbtlx2oyxvW+4M9LOuS4Jz2bpPV8HwxeDVIH3/sn/0emXhJnvMnrI9lrEDdsTesWM2ZDL6HH2JvkXfez/irfhh/GhZ2otWPQ/YbxE/+QnR+BSP</latexit>

Unigram Models
• Simplest solution: unigrams

• Generative process: pick a word, pick a word, … until you pick STOP
• As a graphical model:

• Examples:
– [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]
– [thrift, did, eighty, said, hard, 'm, july, bullish]
– [that, or, limited, the]
– []
– [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed,

mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the,
further, board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes,
percent, a, they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute,
dentistry, pay, however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada,
the, so, workers, advancers, half, between, nasdaq]

• Big problem with unigrams: 𝑃(the the the the) >> 𝑃(I like ice cream)!

p(x1 . . . xn) =
nY

i=1

p(xi)

x1 x2 xn-1 STOP………….

Bigram Models
• Condition on previous single word:

• Generative process:
– pick START, pick a word conditioned on previous one, repeat until to pick STOP

• Graphical Model:

• Any better?
– [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr.,

gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred,
fifty, five, yen]

– [outside, new, car, parking, lot, of, the, agreement, reached]
– [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,

seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of,
american, brands, vying, for, mr., womack, currently, sharedata, incorporated,
believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to,
conscientious, teaching]

– [this, would, be, a, record, november]
• But, what is the cost?

p(x1 . . . xn) =
nY

i=1

p(xi|xi�1)

x1 x2 xn-1 STOPSTART

Approximating ________

N-gram Model Decomposition

• 𝑘-gram models (𝑘 > 1): condition on 𝑘 − 1 previous words

• Example: tri-gram (3-gram)

• Learning: estimate the distributions

p(x1 . . . xn) =
nY

i=1

q(xi|xi�(k�1) . . . xi�1)
1.3. TRIGRAM LANGUAGE MODELS 7

we would have

p(the dog barks STOP) = q(the|*, *)⇥q(dog|*, the)⇥q(barks|the, dog)⇥q(STOP|dog, barks)

Note that in this expression we have one term for each word in the sentence (the,
dog, barks, and STOP). Each word depends only on the previous two words: this
is the trigram assumption.

The parameters satisfy the constraints that for any trigram u, v, w,

q(w|u, v) � 0

and for any bigram u, v,
X

w2V[{STOP}

q(w|u, v) = 1

Thus q(w|u, v) defines a distribution over possible words w, conditioned on the
bigram context u, v.

The key problem we are left with is to estimate the parameters of the model,
namely

q(w|u, v)

where w can be any member of V[{STOP}, and u, v 2 V[{*}. There are around
|V|3 parameters in the model. This is likely to be a very large number. For example
with |V| = 10, 000 (this is a realistic number, most likely quite small by modern
standards), we have |V|3 ⇡ 1012.

1.3.2 Maximum-Likelihood Estimates

We first start with the most generic solution to the estimation problem, the maximum-
likelihood estimates. We will see that these estimates are flawed in a critical way,
but we will then show how related estimates can be derived that work very well in
practice.

First, some notation. Define c(u, v, w) to be the number of times that the tri-
gram (u, v, w) is seen in the training corpus: for example, c(the, dog, barks) is
the number of times that the sequence of three words the dog barks is seen in the
training corpus. Similarly, define c(u, v) to be the number of times that the bigram
(u, v) is seen in the corpus. For any w, u, v, we then define

q(w|u, v) = c(u, v, w)

c(u, v)

1.3. TRIGRAM LANGUAGE MODELS 7

we would have

p(the dog barks STOP) = q(the|*, *)⇥q(dog|*, the)⇥q(barks|the, dog)⇥q(STOP|dog, barks)

Note that in this expression we have one term for each word in the sentence (the,
dog, barks, and STOP). Each word depends only on the previous two words: this
is the trigram assumption.

The parameters satisfy the constraints that for any trigram u, v, w,

q(w|u, v) � 0

and for any bigram u, v,
X

w2V[{STOP}

q(w|u, v) = 1

Thus q(w|u, v) defines a distribution over possible words w, conditioned on the
bigram context u, v.

The key problem we are left with is to estimate the parameters of the model,
namely

q(w|u, v)

where w can be any member of V[{STOP}, and u, v 2 V[{*}. There are around
|V|3 parameters in the model. This is likely to be a very large number. For example
with |V| = 10, 000 (this is a realistic number, most likely quite small by modern
standards), we have |V|3 ⇡ 1012.

1.3.2 Maximum-Likelihood Estimates

We first start with the most generic solution to the estimation problem, the maximum-
likelihood estimates. We will see that these estimates are flawed in a critical way,
but we will then show how related estimates can be derived that work very well in
practice.

First, some notation. Define c(u, v, w) to be the number of times that the tri-
gram (u, v, w) is seen in the training corpus: for example, c(the, dog, barks) is
the number of times that the sequence of three words the dog barks is seen in the
training corpus. Similarly, define c(u, v) to be the number of times that the bigram
(u, v) is seen in the corpus. For any w, u, v, we then define

q(w|u, v) = c(u, v, w)

c(u, v)

where xi 2 V [{STOP} and x�k+2 . . . x0 = ⇤

Well Defined Distributions
Proof for Unigrams

• Simplest case: unigrams

• Generative process: pick a word, pick a word, … until you pick STOP
• For all strings 𝑋 (of any length): 𝑝(𝑋) ≥ 0
• Claim: the sum over string of all lengths is 1 : ∑! 𝑝(𝑋) = 1

p(x1 . . . xn) =
nY

i=1

p(xi)

CSE392 Natural Language Processing Fall 2013

Assignment 2: HMM-based part-of-speech tagging

— Due Nov 30 11:59 PM, Submission to Blackboard —

1 Overall Goal

In this homework you will implement hidden Markov model (HMM) part-of-
speech tagger. Briefly, the input to the system will be a sentence (a sequence
of words and punctuation tokens), and the output will be the part-of-speech
tags of that sentence. You may work in groups of 2 students. Students in
the same group get the same grade for this assignment.

X

x

p(x) =
1X

n=1

X

x1...xn

p(x1...xn)

X

x1...xn

p(x1...xn) =
X

x1...xn

nY

i=1

p(xi) =
X

x1

...
X

xn

p(x1)⇥ ...⇥ p(xn)

=
X

x1

p(x1)⇥ ...⇥
X

xn

p(xn) = (1� ps)
n�1ps where ps = p(STOP)

X

x

p(x) =
1X

n=1

(1� ps)
n�1ps = ps

1X

n=1

(1� ps)
n�1 = ps

1

1� (1� ps)
= 1

2 Programming Portion

1. The dataset is provided as data.pos file. You can use the first 80% of
the dataset as training corpus, and the rest as the test data.

2. You may use any programming language you like.

3. You must implement the following two components of HMMs yourself:
(1) Supervised HMM training with Laplace smoothing
(2) Viterbi algorithm (which is the algorithm used for testing)

4. Baseline: you can achieve surprisingly high performance (approxi-
mately 90%) by blindly (i.e., always) choosing the most-frequent-tag
for each word. You must implement this baseline as well.

1

CSE392 Natural Language Processing Fall 2013

Assignment 2: HMM-based part-of-speech tagging

— Due Nov 30 11:59 PM, Submission to Blackboard —

1 Overall Goal

In this homework you will implement hidden Markov model (HMM) part-of-
speech tagger. Briefly, the input to the system will be a sentence (a sequence
of words and punctuation tokens), and the output will be the part-of-speech
tags of that sentence. You may work in groups of 2 students. Students in
the same group get the same grade for this assignment.

X

x

p(x) =
1X

n=1

X

x1...xn

p(x1...xn)

X

x1...xn

p(x1...xn) =
X

x1...xn

nY

i=1

p(xi) =
X

x1

...
X

xn

p(x1)⇥ ...⇥ p(xn)

=
X

x1

p(x1)⇥ ...⇥
X

xn

p(xn) = (1� ps)
n�1ps where ps = p(STOP)

X

x

p(x) =
1X

n=1

(1� ps)
n�1ps = ps

1X

n=1

(1� ps)
n�1 = ps

1

1� (1� ps)
= 1

2 Programming Portion

1. The dataset is provided as data.pos file. You can use the first 80% of
the dataset as training corpus, and the rest as the test data.

2. You may use any programming language you like.

3. You must implement the following two components of HMMs yourself:
(1) Supervised HMM training with Laplace smoothing
(2) Viterbi algorithm (which is the algorithm used for testing)

4. Baseline: you can achieve surprisingly high performance (approxi-
mately 90%) by blindly (i.e., always) choosing the most-frequent-tag
for each word. You must implement this baseline as well.

1

(1)

(2)

(1)+(2)

X

X

p(X) =
1X

n=1

X

x1...xn

p(x1 . . . xn)

Recurrent neural network languages model are surprisingly not
necessarily well defined distributions! (Chen et al. 2018)

X

X

p(X) =
1X

n=1

(1� ps)
n�1ps = ps

1X

n=1

(1� ps)
n�1 = ps

1

1� (1� ps)
= 1

<latexit sha1_base64="TBhP8ufHuhRoLJsLiXwXhGUrnd8=">AAACXHicbVHPS8MwGE3r1G06nQpevASHsB02GpnoZTD04nGC+wHbLGmWalialiQVRuk/6W0X/xVNtwrO+UHCy3vv40tevIgzpR1nadk7hd29/WKpfHBYOTqunpwOVBhLQvsk5KEceVhRzgTta6Y5HUWS4sDjdOjNHzJ9+E6lYqF41ouITgP8KpjPCNaGcqtqouLAHcGoPmrADlydEtFB6cuECV8v6qgZuarxkogmSg0ynmzf8sEN44/Ll5gkKE1QM5czBbnVmtNyVgW3AcpBDeTVc6sfk1lI4oAKTThWaoycSE8TLDUjnKblSaxohMkcv9KxgQIHVE2TVTgpvDLMDPqhNEtouGJ/dyQ4UGoReMYZYP2m/moZ+Z82jrV/N02YiGJNBVkP8mMOdQizpOGMSUo0XxiAiWTmrpC8YZOINv9RNiGgv0/eBoPrFmq3bp7ate59HkcRXIBLUAcI3IIueAQ90AcELMGXVbRK1qddsA/sytpqW3nPGdgo+/wb9wuxQQ==</latexit>

http://aclweb.org/anthology/N18-1205.pdf

N-gram Model Parameters
• The parameters of an n-gram model:

– Maximum likelihood estimate: relative frequency

where c is the empirical counts on a training set
• General approach

– Take a training set 𝐷 and a test set 𝐷′
– Compute an estimate of the 𝑞’s from 𝐷
– Use it to assign probabilities to other sentences, such as those in 𝐷′

qML(w) =
c(w)

c()
, qML(w|v) =

c(v, w)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door

23135851162 the *

Tr
ai

ni
ng

 C
ou

nt
s

q(door|the) = 14112454

2313581162

= 0.0006

Higher Order N-grams?

Please close the door
Please close the first window on the left

3380 please close the door
1601 please close the window
1164 please close the new
1159 please close the gate
…
0 please close the first

13951 please close the *

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door

23135851162 the *

197302 close the window
191125 close the door
152500 close the gap
116451 close the thread
87298 close the deal

3785230 close the *

Regular Languages?

• N-gram models are (weighted) regular
languages
– Linguists argue that language isn’t regular.

• Long-distance effects: “The computer which I had
just put into the machine room on the fifth floor
____??danced/crashed??____.”

• Recursive structure
–Why CAN we often get away with n-gram

models?

Measuring Model Quality
• The goal isn’t to pound out fake sentences!

– Generated sentences get “better” as we increase the
model order

– More precisely: using ML estimators, higher order
always gives better likelihood on train, but not test

• What we really want to know is:
– Will our model prefer good sentences to bad ones?
– Bad ≠ ungrammatical!
– Bad » unlikely
– Bad = sentences that our acoustic model really likes

but aren’t the correct answer

Measuring Model Quality
• The Shannon Game:

– How well can we predict the next word?

– Unigrams are terrible at this game. (Why?)

• A better model of a text…
– is one which assigns a higher probability to the word that

actually occurs

When I eat pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____

grease 0.5

sauce 0.4

dust 0.05

….

mice 0.0001

….

the 1e-100
Claude Shannon

Measuring Model Quality

• For every sentences 𝑋(") (𝑖 = 1…𝑚) we
can estimate its probability 𝑝(𝑋("))

• A natural measure of model quality:

• The higher this quantity is, the better we
model unseen sentences

mY

i=1

p(X(i))

Perplexity
• Let M be the number of words in the corpus
• The average log probability is:

• The perplexity is:

• Where: PP = 2�l

l =
1

M

mX

i=1

log2 p(X
(i))

1

M
log2

mY

i=1

p(X(i)) =
1

M

mX

i=1

log2 p(X
(i))

Perplexity

• Lower is better!
• Perplexity is the inverse probability of the

test set normalized by the number of words
• If we ever give a test n-gram zero probability
à perplexity will be infinity
– We should avoid this

PP = 2�l l =
1

M

mX

i=1

log2 p(X
(i))

Perplexity

• Under a uniform distribution the perplexity will be the
vocabulary size:
– Let’s suppose 𝑀 sentences consisting of random digits
– What is the perplexity of this data according to a model

that assign P=1/10 to each digit?

PP = 2�l l =
1

M

mX

i=1

log2 p(X
(i))

PP =2�
1
M

Pm
i=1 log2(

1
10)

|X(i)|

=2�
1
M

Pm
i=1 |X(i)| log2

1
10

=2� log2
1
10 = 2� log2 10�1

= 10

Lower perplexity = better model
• Training 38 million words, test 1.5 million words, 20k

word types WSJ

• Important notes:
– It’s easy to get bogus perplexities by having bogus probabilities

that sum to more than one over their event spaces.
– Generally, perplexity captures the effective vocabulary size

under the model, so it’s important to keep it fixed

N-gram Order Unigram Bigram Trigram*
Perplexity 962 170 109

*With Good-Turing smoothing

Measuring Model Quality: Speech
• Word Error Rate (WER)

• The “right” measure:
– Task error driven
– For speech recognition
– For a specific recognizer!

• Common issue: intrinsic measures like perplexity are easier to use,
but extrinsic ones are more credible

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions
true sentence size

WER: 4/7
= 57%

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000

Number of Words

Fr
ac

tio
n

Se
en

Unigrams

Bigrams

Rules

Sparsity in Language Models
• Problems with n-gram models:

– New words appear all the time:
• Synaptitute
• 132,701.03
• Multidisciplinarization
• Post-truth

– New n-grams: even more often
• Zipf’s Law

– Broadly: most word types are rare ones
– Rank word types by token frequency à Frequency inversely

proportional to rank
• The most frequent word will occur approximately twice as often as the second

most frequent word, three times as often as the third most frequent word, etc.
– Only 135 items account for half the Brown corpus
– Not special to language: randomly generated character strings have

this property (try it!)
• This is particularly problematic when…

– Training set is small (does this happen for language modeling?)
– Transferring domains: e.g., newswire, scientific literature, Twitter

Zeroes
• Training set:

… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

• Test set:
… denied the offer
… denied the loan

• A single n-gram with zero probability
– Mean that we will assign 0 probability to the test set!

• And hence we cannot compute perplexity (can’t
divide by 0)!

Parameter Estimation
• The parameters of an n-gram model:

– Maximum likelihood estimate: relative frequency

where c is the empirical counts on a training set
• Maximum likelihood estimates won’t get us very far
• Need to smooth these estimates
• General method (procedurally)

– Take your empirical counts
– Modify them in various ways to improve estimates

• General method (mathematically)
– Sometimes can give estimators a formal statistical interpretation
– Approaches that are mathematically obvious do not always work best

qML(w) =
c(w)

c()
, qML(w|v) =

c(v, w)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .

Smoothing
• We often want to make estimates from sparse statistics:

• Smoothing flattens spiky distributions so they generalize better

• Very important all over NLP (and ML more generally), but easy to do badly!

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

al
le

ga
tio

ns

ch
ar

ge
s

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

ch
ar

ge
s

re
qu
es
t

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cl
ai
m
s

re
qu
es
t

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Add-one Estimation
• Also called Laplace smoothing
• Pretend we saw each word one more time than we

did 🙄
• Just add one to all the counts!

• MLE estimate:

• Add-1 estimate:

PMLE(xi | xi�1) =
c(xi�1, xi)

c(xi�1)

PAdd-1(xi | xi�1) =
c(xi�1, xi) + 1

c(xi�1) + V

More General Formulation

• Add-K:

• Unigram Prior Smoothing:

PAdd-k(xi | xi�1) =
c(xi�1, xi) + k

c(xi�1) + kV

PAdd-k(xi | xi�1) =
c(xi�1, xi) +m 1

V

c(xi�1) +m

PAdd-k(xi | xi�1) =
c(xi�1, xi) +mP (xi)

c(xi�1) +m

Berkeley Restaurant Corpus
• can you tell me about any good cantonese

restaurants close by
• mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food

that are available
• i’m looking for a good place to eat breakfast
• when is caffe venezia open during the day

Raw Bigram Counts

• From 9222 sentences

Bigram Probabilities

• Normalize by unigrams:

• Result:

Add-1 on the Berkeley Restaurant
Corpus

Add-1 Smoothed Bigrams

PAdd-1(xi | xi�1) =
c(xi�1, xi) + 1

c(xi�1) + V

Reconstituted Counts
PAdd-1(xi | xi�1) =

c(xi�1, xi) + 1

c(xi�1) + V

c⇤(xi�1, xi) =
(c(xi�1, xi) + 1)c(xi�1)

c(xi�1) + V

Original vs. Add-1 (reconstituted) Bigram Counts

Add-1 is a Blunt Instrument

• So Add-1 isn’t used for N-grams:
–We’ll see better

• But Add-1 is used to smooth other NLP
models
– For text classification
– In domains where the number of zeroes isn’t

so big

Add-1 Smoothing
• Classic solution: add counts (Laplace smoothing)

– Most comment: add-1 smoothing

• For a bigram distribution, can add counts shaped
like the unigram:

• Problem: works quite poorly!

PAdd-�(w) =
c(w) + �P

w0(c(w0) + �)
=

c(w) + �

c() + �V

PUni-�(w|v) =
c(v, w) + �qML(w)P

w0 (c(v, w0) + �qML(w0))
=

c(v, w) + �PMLE(w)

c(v) + �

Linear Interpolation
• Problem: MLE is supported by few counts
• Classic solution: mixtures of related, denser histories:

• Is this a well defined distribution?
– Yes, if all 𝜆𝑖 ≥ 0 and they sum to 1

• The mixture approach tends to work better than Add-δ
– Can flexibly include multiple back-off contexts
– Good ways of learning the mixture weights with EM (later)
– But: not entirely clear why it works so much better

• All the details you could ever want: [Chen and Goodman, 98]

P�(w|u, v) = �3PMLE(w|u, v) + �2PMLE(w|v) + �1PMLE(w)

Linear Interpolation
• Problem: MLE is supported by few counts
• Classic solution: mixtures of related, denser histories:

• Is this a well defined distribution?
– Yes, if all 𝜆𝑖 ≥ 0 and they sum to 1

• The mixture approach tends to work better than Add-δ
– Can flexibly include multiple back-off contexts
– Good ways of learning the mixture weights with EM (later)
– But: not entirely clear why it works so much better

• All the details you could ever want: [Chen and Goodman, 98]

P�(w|u, v) = �3PMLE(w|u, v) + �2PMLE(w|v) + �1PMLE(w)

Estimating Lambdas

• Use a validation corpus

• Choose 𝜆s to maximize the probability of
validation data:
– Fix the N-gram probabilities (on the training data)
– Then search for 𝜆s that give highest probability to

validation set:
logP (x1, . . . , xn | �1, . . . ,�k) =

X

i

logP�(xi | xi�1)

Training Data Development
Data

Held-out Test
Data

Validation

Advanced Smoothing Algorithms

• Intuition: Use the count of things we’ve seen
once
– To help estimate the count of things we’ve never

seen
• Used by many smoothing algorithms

– Good-Turing
– Kneser-Ney
– Also: Witten-Bell

Invented during WWII by Alan Turing and
later published by Good. Frequency
estimates were needed for Enigma code-
breaking effort

What Actually Works?
• Trigrams and beyond:

– Unigrams, bigrams generally useless
– Trigrams much better (when there’s enough data)
– 4-, 5-grams really useful in MT, but not so much for speech

• Discounting
– Absolute discounting, Good-Turing, held-out estimation, Witten-

Bell, etc…

• See [Chen+Goodman] reading for tons of graphs…

Data vs. Method?
• Having more data is better…

• … but so is using a better estimator
• Another issue: 𝑁 > 3 has huge costs

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

1 2 3 4 5 6 7 8 9 10 20
n-gram order

E
nt

ro
py

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Practical Issues
• We do everything in log space
– Avoid underflow
– (also adding is faster than multiplying)
– (though log can be slower than multiplication)

• (but, you just said adding is faster 🤷)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Web-scale N-grams

…

Google N-grams
• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Web-scale N-grams
• How to deal with, e.g., Google N-gram corpus
• Pruning

– Only store N-grams with count > threshold.
• Remove singletons of higher-order n-grams

– Entropy-based pruning (more advanced)
• Efficiency

– Efficient data structures like tries
– Bloom filters: approximate language models
– Store words as indexes, not strings

• Use Huffman coding to fit large numbers of words into two
bytes

– Quantize probabilities (4-8 bits instead of 8-byte float)

Even More Data!
Tons of data closes gap, for extrinsic MT evaluation

http://www.aclweb.org/anthology/D07-1090.pdf

http://www.aclweb.org/anthology/D07-1090.pdf

Handling Unknown Words
• If we know all the words in advance

– Vocabulary V is fixed
– Closed vocabulary task

• Often, we don’t know this
– Out Of Vocabulary = OOV words
– Open vocabulary task

• Instead: create an unknown word token <UNK>
– Training of <UNK> probabilities

• Create a fixed lexicon L of size V (e.g., rare words are not in L)
• At text normalization phase, any training word not in L changed to

<UNK>
• Now we train its probabilities like a normal word

– At decoding time
• If text input: Use UNK probabilities for any word not in training

Case Study: Language Identification
• How can we tell what language a document is in?

• How to tell the French from the English?
– Treat it as word-level text categorization?
– Overkill, and requires more training data than you really need

• You don’t actually need to know about words!

• Option: build a character-level language model

The 38th Parliament will meet on
Monday, October 4, 2004, at 11:00 a.m.
The first item of business will be the
election of the Speaker of the House of
Commons. Her Excellency the Governor
General will open the First Session of
the 38th Parliament on October 5, 2004,
with a Speech from the Throne.

La 38e législature se réunira à 11 heures le
lundi 4 octobre 2004, et la première affaire
à l'ordre du jour sera l’élection du
président de la Chambre des communes.
Son Excellence la Gouverneure générale
ouvrira la première session de la 38e
législature avec un discours du Trône le
mardi 5 octobre 2004.

Σύμφωνο σταθερότητας και ανάπτυξης
Patto di stabilità e di crescita

Naïve-Bayes Models
• Generative model: pick a topic, then generate a document

using a language model for that topic
• Naïve-Bayes assumption:

– All words are independent given the topic.

• Compare to a unigram language model:

y

x1 x2 xn. . .

p(y,X) = q(y)

|X|Y

i=1

q(xi | y)

p(x1 . . . xn) =
nY

i=1

p(xi)

Class-Conditional LM
• Can add a topic variable to richer language models

• Could be characters instead of words, used for language ID
• Could sum out the topic variable and use as a language

model
• How might a class-conditional n-gram language model

behave differently from a standard n-gram model?

y

x1 x2 xn. . .START

p(y,X) = q(y)

|X|Y

i=1

q(xi | y, xi�1)

EXTRAS

Notation: Nc = Frequency of
frequency c

• Nc = the count of things we’ve seen c times
• Sam I am I am Sam I do not eat
I 3

sam 2
am 2
do 1
not 1
eat 1

N1 = 3
N2 = 2
N3 = 1

Good-Turing Smoothing Intuition
• You are fishing (a scenario from Josh Goodman), and

caught:
– 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

• How likely is it that next species is trout?
– 1/18

• How likely is it that next species is new (i.e. ca7ish or bass)
– Let’s use our es<mate of things-we-saw-once to es<mate the

new things.
– 3/18 (because N1=3)

• Assuming so, how likely is it that next species is trout?
– Must be less than 1/18
– How to estimate?

Good-Turing Calculations

Seen once (trout)
§ c = 1
§ MLE p = 1/18
§ C*(trout) = 2 * N2/N1 = 2 * 1/3 = 2/3
§ P*GT(trout) = 2/3 / 18 = 1/27

Unseen (bass or catfish)
§ c = 0:
§ MLE p = 0/18 = 0
§ P*

GT (unseen) = N1/N = 3/18

c*= (c+1)Nc+1

Nc

PGT
* (things with zero frequency) = N1

N

Good-Turing Complications
• Problem: what about

“the”? (say c=4417)
– For small k, Nk > Nk+1
– For large k, too jumpy,

zeroes wreck estimates

– Simple Good-Turing
[Gale and Sampson]:
replace empirical Nk with
a best-fit power law once
counts get unreliable

N1
N2 N3

N1
N2

Good-Turing Numbers
• Numbers from Church

and Gale (1991)
• 22 million words of AP

Newswire

• It sure looks like
c* = (c - .75)

c*= (c+1)Nc+1

Nc

Count
c

Good Turing c*

0 .0000270
1 0.446
2 1.26
3 2.24
4 3.24
5 4.22
6 5.19
7 6.21
8 7.24
9 8.25

Absolute Discounting
• Idea: observed n-grams occur more in training than they will later:

• Absolute Discounting (Bigram case)
– No need to actually have held-out data; just subtract 0.75 (or some d)

– But, then we have “extra” probability mass

– Question: How to distribute α between the unseen words?

Count in 22M Words Future c* (Next 22M)
1 0.448

2 1.25

3 2.24
4 3.23

↵(v) = 1�
X

w

c⇤(v, w)

c(v)

c⇤(v, w) = c(v, w)� 0.75 and q(w|v) = c⇤(v, w)

c(v)

Katz Backoff
§ Absolute discounting, with backoff to unigram estimates

§ Define seen and unseen bigrams:

§ Now, backoff to maximum likelihood unigram estimates for unseen
bigrams

§ Can consider hierarchical formulations: trigram is recursively
backed off to Katz bigram estimate, etc

§ Can also have multiple count thresholds (instead of just 0 and >0)
§ Problem?

§ Unigram estimates are bad predictors

↵(v) = 1�
X

w

c⇤(v, w)

c(v)

qBO(w|v) =
(

c
⇤(v,w)
c(v) If w 2 A(v)

↵(v)⇥ qML(w)P
w02B(v) qML(w0) If w 2 B(v)

A(v) = {w : c(v, w) > 0} B(v) = {w : c(v, w) = 0}

c⇤(v, w) = c(v, w)� �

Kneser-Ney Smoothing
• Better estimate for probabilities of lower-order

unigrams!
– Shannon game: I can’t see without my

reading___________?
– “Francisco” is more common than “glasses”
– … but “Francisco” always follows “San”

• Instead of P(w): “How likely is w”
• Pcontinuation(w): “How likely is w to appear as a novel

continuation?
– For each word, count the number of bigram types it

completes
– Every bigram type was a novel continuation the first time it

was seen
PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

Franciscoglasses

Kneser-Ney Smoothing

• How many times does w appear as a
novel continuation:

• Normalized by the total number of word
bigram types

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

Kneser-Ney Smoothing
• A frequent word (Francisco) occurring in only one

context (San) will have a low continuation probability
• Replace unigram in discounting:

75

PKN (wi |wi−1) =
max(c(wi−1,wi)− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is a normalizing constant; the probability mass we’ve discounted

the normalized discount
The number of word types that can follow wi-1
= # of word types we discounted
= # of times we applied normalized discount

Kneser-Ney Smoothing: Recursive
Formulation

PKN (wi |wi−n+1
i−1) = max(cKN (wi−n+1

i)− d, 0)
cKN (wi−n+1

i−1)
+λ(wi−n+1

i−1)PKN (wi |wi−n+2
i−1)

cKN (•) =
count(•) for the highest order

continuationcount(•) for lower order

!
"
#

$#

Continuation count = Number of unique single
word contexts for �

Smoothing at Web-scale
• “Stupid backoff” (Brants et al. 2007)
• No discounting, just use relative frequencies

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i)> 0

0.4S(wi |wi−k+2
i−1) otherwise

"

#
$$

%
$
$

S(wi) =
count(wi)

N

