
A Course in Discrete Structures

Rafael Pass
Wei-Lung Dustin Tseng

Preface

Discrete mathematics deals with objects that come in discrete bundles, e.g.,
1 or 2 babies. In contrast, continuous mathematics deals with objects that
vary continuously, e.g., 3.42 inches from a wall. Think of digital watches
versus analog watches (ones where the second hand loops around continuously
without stopping).

Why study discrete mathematics in computer science? It does not directly
help us write programs. At the same time, it is the mathematics underlying
almost all of computer science. Here are a few examples:

• Designing high-speed networks and message routing paths.
• Finding good algorithms for sorting.
• Performing web searches.
• Analysing algorithms for correctness and efficiency.
• Formalizing security requirements.
• Designing cryptographic protocols.

Discrete mathematics uses a range of techniques, some of which is sel-
dom found in its continuous counterpart. This course will roughly cover the
following topics and specific applications in computer science.

1. Sets, functions and relations
2. Proof techniques and induction
3. Number theory

a) The math behind the RSA Crypto system
4. Counting and combinatorics
5. Probability

a) Spam detection
b) Formal security

6. Logic
a) Proofs of program correctness

7. Graph theory

i

a) Message Routing
b) Social networks

8. Finite automata and regular languages
a) Compilers

In the end, we will learn to write precise mathematical statements that
captures what we want in each application, and learn to prove things about
these statements. For example, how will we formalize the infamous zero-
knowledge property? How do we state, in mathematical terms, that a banking
protocol allows a user to prove that she knows her password, without ever
revealing the password itself?

Contents

Contents iii

1 Sets, Functions and Relations 1
1.1 Sets . 1
1.2 Relations . 5
1.3 Functions . 7
1.4 Set Cardinality, revisited . 8

2 Proofs and Induction 13
2.1 Basic Proof Techniques . 13
2.2 Proof by Cases and Examples 15
2.3 Induction . 17
2.4 Inductive Definitions . 26
2.5 Fun Tidbits . 31

3 Number Theory 37
3.1 Divisibility . 37
3.2 Modular Arithmetic . 41
3.3 Primes . 47
3.4 The Euler φ Function . 52
3.5 Public-Key Cryptosystems and RSA 56

4 Counting 61
4.1 The Product and Sum Rules 61
4.2 Permutations and Combinations 63
4.3 Combinatorial Identities . 65
4.4 Inclusion-Exclusion Principle 69
4.5 Pigeonhole Principle . 72

5 Probability 73

iii

5.1 Probability Spaces . 73
5.2 Conditional Probability and Independence 77
5.3 Random Variables . 85
5.4 Expectatation . 87
5.5 Variance . 92

6 Logic 95
6.1 Propositional Logic . 95
6.2 Logical Inference . 100
6.3 First Order Logic . 105
6.4 Applications . 108

7 Graphs 109
7.1 Graph Isomorphism . 112
7.2 Paths and Cycles . 115
7.3 Graph Coloring . 120
7.4 Random Graphs [Optional] . 122

8 Finite Automata 125
8.1 Deterministic Finite Automata 125
8.2 Non-Deterministic Finite Automata 130
8.3 Regular Expressions and Kleene’s Theorem 133

A Problem Sets 137
A.1 Problem Set A . 137

B Solutions to Problem Sets 141
B.1 Problem Set A . 141

Chapter 1

Sets, Functions and Relations

“A happy person is not a person in a certain set of circumstances, but rather a
person with a certain set of attitudes.”

– Hugh Downs

1.1 Sets

A set is one of the most fundamental object in mathematics.

Definition 1.1 (Set, informal). A set is an unordered collections of objects.

Our definition is informal because we do not define what a “collection” is;
a deeper study of sets is out of the scope of this course.

Example 1.2. The following notations all refer to the same set:

{1, 2}, {2, 1}, {1, 2, 1, 2}, {x | x is an integer, 1 ≤ x ≤ 2}

The last example read as “the set of all x such that x is an integer between 1
and 2 (inclusive)”.

We will encounter the following sets and notations throughout the course:

• ∅ = { }, the empty set.
• N = {0, 1, 2, 3, . . . }, the non-negative integers
• N+ = {1, 2, 3, . . . }, the positive integers
• Z = {. . . ,−2,−1, 0, 1, 2 . . . }, the integers
• Q = {q | q = a/b, a, b ∈ Z, b 6= 0}, the rational numbers
• Q+ = {q | q ∈ Q, q > 0}, the positive rationals
• R, the real numbers

1

2 sets, functions and relations

• R+, the positive reals

Given a collection of objects (a set), we may want to know how large is the
collection:

Definition 1.3 (Set cardinality). The cardinality of a set A is the number of
(distinct) objects in A, written as |A|. When |A| ∈ N (a finite integer), A is a
finite set; otherwise A is an infinite set. We discuss the cardinality of infinite
sets later.

Example 1.4. |{1, 2, 3}| = |{1, 2, {1, 2}}| = 3.

Given two collections of objects (two sets), we may want to know if they
are equal, or if one collection contains the other. These notions are formalized
as set equality and subsets:

Definition 1.5 (Set equality). Two sets S and T are equal, written as S = T ,
if S and T contains exactly the same elements, i.e., for every x, x ∈ S ↔ x ∈ T .

Definition 1.6 (Subsets). A set S is a subset of set T , written as S ⊆ T , if
every element in S is also in T, i.e., for every x, x ∈ S → x ∈ T . Set S is a
strict subset of T, written as S ⊂ T if S ⊆ T , and there exist some element
x ∈ T such that x /∈ S.

Example 1.7.

• {1, 2} ⊆ {1, 2, 3}.
• {1, 2} ⊂ {1, 2, 3}.
• {1, 2, 3} ⊆ {1, 2, 3}.
• {1, 2, 3} 6⊂ {1, 2, 3}.
• For any set S, ∅ ⊆ S.
• For every set S 6= ∅, ∅ ⊂ S.
• S ⊆ T and T ⊆ S if and only if S = T .

Finally, it is time to formalize operations on sets. Given two collection of
objects, we may want to merge the collections (set union), identify the objects
in common (set intersection), or identify the objects unique to one collection
(set difference). We may also be interested in knowing all possible ways of
picking one object from each collection (Cartesian product), or all possible
ways of picking some objects from just one of the collections (power set).

Definition 1.8 (Set operations). Given sets S and T , we define the following
operations:

1.1. SETS 3

• Power Sets. P(S) is the set of all subsets of S.

• Cartesian Product. S × T = {(s, t) | s ∈ S, t ∈ T}.

• Union. S ∪ T = {x | x ∈ S or x ∈ T}, set of elements in S or T .

• Intersection. S ∩ T = {x | x ∈ S, x ∈ T}, set of elements in S and T .

• Difference. S − T = {x | x ∈ S, x /∈ T}, set of elements in S but not T .

• Complements. S = {x | x /∈ S}, set of elements not in S. This is
only meaningful when we have an implicit universe U of objects, i.e.,
S = {x | x ∈ U , x /∈ S}.

Example 1.9. Let S = {1, 2, 3}, T = {3, 4}, V = {a, b}. Then:

• P(T) = {∅, {3}, {4}, {3, 4}}.
• S × V = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.
• S ∪ T = {1, 2, 3, 4}.
• S ∩ T = {3}.
• S − T = {1, 2}.
• If we are dealing with the set of all integers, S = {. . . ,−2,−1, 0, 4, 5, . . . }.

Some set operations can be visualized using Venn diagrams. See Figure
1.1. To give an example of working with these set operations, consider the
following set identity.

Theorem 1.10. For all sets S and T , S = (S ∩ T) ∪ (S − T).

Proof. We can visualize the set identity using Venn diagrams (see Figure 1.1b
and 1.1c). To formally prove the identity, we will show both of the following:

S ⊆ (S ∩ T) ∪ (S − T) (1.1)

(S ∩ T) ∪ (S − T) ⊆ S (1.2)

To prove (1.1), consider any element x ∈ S. Either x ∈ T or x /∈ T .

• If x ∈ T , then x ∈ S ∩ T , and thus also x ∈ (S ∩ T) ∪ (S − T).
• If x /∈ T , then x ∈ (S − T), and thus again x ∈ (S ∩ T) ∪ (S − T).

To prove (1.2), consider any x ∈ (S ∩ T) ∪ (S − T). Either x ∈ S ∩ T or
x ∈ S − T

• If x ∈ S ∩ T , then x ∈ S

4 sets, functions and relations

S T

U

(a) S ∪ T

S T

U

(b) S ∩ T

S T

U

(c) S − T

S T

U

(d) S

S T

V

(e) Venn diagram with three sets.

Figure 1.1: Venn diagrams of sets S, T , and V under universe U .

• If x ∈ S − T , then x ∈ S. �

In computer science, we frequently use the following additional notation
(these notation can be viewed as short hands):

Definition 1.11. Given a set S and a natural number n ∈ N,

• Sn is the set of length n “strings” (equivalently n-tuples) with alphabet
S. Formally we define it as the product of n copies of S (i.e., S × S ×
· · · × S).

• S∗ is the set of finite length “strings” with alphabet S. Formally we
define it as the union of S0 ∪ S1 ∪ S2 ∪ · · · , where S0 is a set that
contains only one element: the empty string (or the empty tuple “()”).

1.2. RELATIONS 5

• [n] is the set {0, 1, . . . , n− 1}.

Commonly seen set includes {0, 1}n as the set of n-bit strings, and {0, 1}∗
as the set of finite length bit strings. Also observe that |[n]| = n.

Before we end this section, let us revisit our informal definition of sets: an
unordered “collection” of objects. In 1901, Russel came up with the following
“set”, known as Russel’s paradox1:

S = {x | x /∈ x}

That is, S is the set of all sets that don’t contain themselves as an element.
This might seem like a natural “collection”, but is S ∈ S? It’s not hard to
see that S ∈ S ↔ S /∈ S. The conclusion today is that S is not a good
“collection” of objects; it is not a set.

So how will know if {x | x satisfies some condition} is a set? Formally, sets
can be defined axiomatically, where only collections constructed from a careful
list of rules are considered sets. This is outside the scope of this course. We will
take a short cut, and restrict our attention to a well-behaved universe. Let E
be all the objects that we are interested in (numbers, letters, etc.), and let U =
E∪P(E)∪P(P(E)), i.e., E, subsets of E and subsets of subsets of E. In fact,
we may extend U with three power set operations, or indeed any finite number
of power set operations. Then, S = {x | x ∈ U and some condition holds} is
always a set.

1.2 Relations

Definition 1.12 (Relations). A relation on sets S and T is a subset of S×T .
A relation on a single set S is a subset of S × S.

Example 1.13. “Taller-than” is a relation on people; (A,B) ∈ ”Taller-than”
if person A is taller than person B. “≥” is a relation on R; “≥”= {(x, y) |
x, y ∈ R, x ≥ y}.

Definition 1.14 (Reflexitivity, symmetry, and transitivity). A relation R on
set S is:

• Reflexive if (x, x) ∈ R for all x ∈ S.

• Symmetric if whenever (x, y) ∈ R, (y, x) ∈ R.
1A folklore version of this paradox concerns itself with barbers. Suppose in a town, the

only barber shaves all and only those men in town who do not shave themselves. This seems
perfectly reasonable, until we ask: Does the barber shave himself?

6 sets, functions and relations

• Transitive if whenever (x, y), (y, z) ∈ R, then (x, z) ∈ R

Example 1.15.

• “≤” is reflexive, but “<” is not.
• “sibling-of” is symmetric, but “≤” and “sister-of” is not.
• “sibling-of”, “≤”, and “<” are all transitive, but “parent-of” is not

(“ancestor-of” is transitive, however).

Definition 1.16 (Graph of relations). The graph of a relation R over S is an
directed graph with nodes corresponding to elements of S. There is an edge
from node x to y if and only if (x, y) ∈ R. See Figure 1.2.

Theorem 1.17. Let R be a relation over S.

• R is reflexive iff its graph has a self-loop on every node.

• R is symmetric iff in its graph, every edge goes both ways.

• R is transitive iff in its graph, for any three nodes x, y and z such that
there is an edge from x to y and from y to z, there exist an edge from x
to z.

• More naturally, R is transitive iff in its graph, whenever there is a path
from node x to node y, there is also a direct edge from x to y.

Proof. The proofs of the first three parts follow directly from the definitions.
The proof of the last bullet relies on induction; we will revisit it later. �

Definition 1.18 (Transitive closure). The transitive closure of a relation R
is the least (i.e., smallest) transitive relation R∗ such that R ⊆ R∗.

Pictorially, R∗ is the connectivity relation: if there is a path from x to y
in the graph of R, then (x, y) ∈ R∗.

Example 1.19. Let R = {(1, 2), (2, 3), (1, 4)} be a relation (say on set Z).
Then (1, 3) ∈ R∗ (since (1, 2), (2, 3) ∈ R), but (2, 4) /∈ R∗. See Figure 1.2.

Theorem 1.20. A relation R is transitive iff R = R∗.

Definition 1.21 (Equivalence relations). A relation R on set S is an equiva-
lence relation if it is reflexive, symmetric and transitive.

Equivalence relations capture the every day notion of “being the same” or
“equal”.

1.3. FUNCTIONS 7

1

2

3

4

(a) The relation R = {(1, 2), (2, 3), (1, 4)}

1

2

3

4

(b) The relation R∗, transitive closure of
R

Figure 1.2: The graph of a relation and its transitive closure.

Example 1.22. The following are equivalence relations:

• Equality, “=”, a relation on numbers (say N or R).
• Parity = {(x, y) | x, y are both even or both odd}, a relation on inte-

gers.

1.3 Functions

Definition 1.23. A function f : S → T is a “mapping” from elements in set
S to elements in set T . Formally, f is a relation on S and T such that for each
s ∈ S, there exists a unique t ∈ T such that (s, t) ∈ R. S is the domain of f ,
and T is the range of f . {y | y = f(x) for some x ∈ S} is the image of f .

We often think of a function as being characterized by an algebraic formula,
e.g., y = 3x − 2 characterizes the function f(x) = 3x − 2. Not all formulas
characterizes a function, e.g. x2 + y2 = 1 is a relation (a circle) that is
not a function (no unique y for each x). Some functions are also not easily
characterized by an algebraic expression, e.g., the function mapping past dates
to recorded weather.

Definition 1.24 (Injection). f : S → T is injective (one-to-one) if for every
t ∈ T , there exists at most one s ∈ S such that f(s) = t, Equivalently, f is
injective if whenever s 6= s, we have f(s) 6= f(s).

Example 1.25.

• f : N→ N, f(x) = 2x is injective.

8 sets, functions and relations

• f : R+ → R+, f(x) = x2 is injective.
• f : R→ R, f(x) = x2 is not injective since (−x)2 = x2.

Definition 1.26 (Surjection). f : S → T is surjective (onto) if the image of
f equals its range. Equivalently, for every t ∈ T , there exists some s ∈ S such
that f(s) = t.

Example 1.27.

• f : N→ N, f(x) = 2x is not surjective.
• f : R+ → R+, f(x) = x2 is surjective.
• f : R→ R, f(x) = x2 is not injective since negative reals don’t have real

square roots.

Definition 1.28 (Bijection). f : S → T is bijective, or a one-to-one corre-
spondence, if it is injective and surjective.

See Figure 1.3 for an illustration of injections, surjections, and bijections.

Definition 1.29 (Inverse relation). Given a function f : S → T , the inverse
relation f−1 on T and S is defined by (t, s) ∈ f−1 if and only if f(s) = t.

If f is bijective, then f−1 is a function (unique inverse for each t). Similarly,
if f is injective, then f−1 is a also function if we restrict the domain of f−1 to
be the image of f . Often an easy way to show that a function is one-to-one is
to exhibit such an inverse mapping. In both these cases, f−1(f(x)) = x.

1.4 Set Cardinality, revisited

Bijections are very useful for showing that two sets have the same number
of elements. If f : S → T is a bijection and S and T are finite sets, then
|S| = |T |. In fact, we will extend this definition to infinite sets as well.

Definition 1.30 (Set cardinality). Let S and T be two potentially infinite
sets. S and T have the same cardinality, written as |S| = |T |, if there exists
a bijection f : S → T (equivalently, if there exists a bijection f ′ : T → S). T
has cardinality at larger or equal to S, written as |S| ≤ |T |, if there exists an
injection g : S → T (equivalently, if there exists a surjection g′ : T → S).

To “intuitively justify” Definition 1.30, see Figure 1.3. The next theorem
shows that this definition of cardinality corresponds well with our intuition
for size: if both sets are at least as large as the other, then they have the same
cardinality.

1.4. SET CARDINALITY, REVISITED 9

X Y

(a) An injective function from X to
Y .

X Y

(b) A surjective function from X to
Y .

X Y

(c) A bijective function from X to Y .

Figure 1.3: Injective, surjective and bijective functions.

Theorem 1.31 (Cantor-Bernstein-Schroeder). If |S| ≤ |T | and |T | ≤ |S|,
then |S| = |T |. In other words, given injective maps, g : S → T and h : T → S,
we can construct a bijection f : S → T .

We omit the proof of Theorem 1.31; interested readers can easily find
multiple flavours of proofs online. Set cardinality is much more interesting
when the sets are infinite. The cardinality of the natural numbers is extra
special, since you can “count” the numbers. (It is also the “smallest infinite
set”, a notion that is outside the scope of this course.)

Definition 1.32. A set S is countable if it is finite or has the same cardinality
as N+. Equivalently, S is countable if |S| ≤ |N+|.

Example 1.33.

• {1, 2, 3} is countable because it is finite.
• N is countable because it has the same cardinality as N+; consider f :

N+ → N, f(x) = x− 1.

10 sets, functions and relations

• The set of positive even numbers, S = {2, 4, . . . }, is countable consider
f : N+ → S, f(x) = 2x.

Theorem 1.34. The set of positive rational numbers Q+ are countable.

Proof. Q+ is clearly not finite, so we need a way to count Q+. Note that
double counting, triple counting, even counting some element infinite many
times is okay, as long as we eventually count all of Q+. I.e., we implicitly
construct a surjection f : N+ → Q+.

Let us count in the following way. We first order the rational numbers
p/q by the value of p+ q; then we break ties by ordering according to p. The
ordering then looks like this:

• First group (p+ q = 2): 1/1
• Second group (p+ q = 3): 1/2, 2/1
• Third group (p+ q = 4): 1/3, 2/2, 3/1

Implicitly, we have f(1) = 1/1, f(2) = 1/2, f(3) = 2/1, etc. Clearly, f is a
surjection. See Figure 1.4 for an illustration of f . �

1/1

2/1

3/1

4/1

5/1

1/2

2/2

3/2

4/2

5/2

1/3

2/3

3/3

4/3

5/3

1/4

2/4

3/4

4/4

5/4

1/5

2/5

3/5

4/5

5/5
...

. . .

...

. . .

...

. . .

...

. . .

...

. . .

Figure 1.4: An infinite table containing all positive rational numbers (with
repetition). The red arrow represents how f traverses this table—how we
count the rationals.

Theorem 1.35. There exists sets that are not countable.

Proof. Here we use Cantor’s diagonlization argument. Let S be the set of
infinite sequences (d1, d2, . . .) over digits {0, 1}. Clearly S is infinite. To

1.4. SET CARDINALITY, REVISITED 11

show that there cannot be a bijection with N+, we proceed by contradiction.
Suppose f : N+ → S is a bijection. We can then enumerate these strings using
f , producing a 2-dimensional table of digits:

f(1) = s1 = (d1
1, d

1
2, d

1
3, . . .)

f(2) = s2 = (d2
1, d

2
2, d

2
3, . . .)

f(3) = s3 = (d3
1, d

3
2, d

3
3, . . .)

Now consider s∗ = (1− d1
1, 1− d2

2, 1− d3
3, . . .), i.e., we are taking the diagonal

of the above table, and flipping all the digits. Then for any n, s∗ is different
from sn in the nth digit. This contradicts the fact that f is a bijection. �

Theorem 1.36. The real interval [0, 1] (the set of real numbers between 0 and
1, inclusive) is uncountable.

Proof. We will show that |[0, 1]| ≥ |S|, where S is the same set as in the
proof of Theorem 1.35. Treat each s = (d1, d2, . . .) ∈ S as the real number
between 0 and 1 with the binary expansion 0.d1d2 · · · . Note that this does
not establish a bijection; some real numbers have two binary expansions, e.g.,
0.1 = 0.0111 · · · (similarly, in decimal expansion, we have 0.1 = 0.0999 · · · 2).

We may overcome this “annoyance” in two ways:

• Since each real number can have at most two decimal representations
(most only have one), we can easily extend the above argument to show
that |S| ≤ |[0, 2]| (i.e., map [0, 1] to one representation, and [1, 2] to the
other). It remains to show that |[0, 1]| = |[0, 2]| (can you think of a
bijection here?).

• We may repeat Cantor’s diagonlization argument as in the proof of The-
orem 1.35, in decimal expansion. When we construct s∗, avoid using the
digits 9 and 0 (e.g., use only the digits 4 and 5). �

A major open problem in mathematics (it was one of Hilbert’s 23 famous
problems listed 1900) was whether there exists some set whose cardinality is
between N and R (can you show that R has the same cardinality as [0, 1]?).

Here is a naive candidate: P(N). Unfortunately, P(N) has the same cardi-
nality as [0, 1]. Note that every element S ∈ P(N) corresponds to an infinitely
long sequence over digits {0, 1} (the nth digit is 1 if and only if the number
n ∈ S). Again, we arrive at the set S in the proof of Theorem 1.35.

2For a proof, consider letting x = 0.0999 · · · , and observe that 10x − x = 0.999 · · · −
0.0999 · · · = 0.9, which solves to x = 0.1.

12 sets, functions and relations

The Continuum Hypothesis states that no such set exists. Gödel and
Cohen together showed (in 1940 and 1963) that this can neither be proved
nor disproved using the standard axioms underlying mathematics (we will
talk more about axioms when we get to logic).

Chapter 2

Proofs and Induction

“Pics or it didn’t happen.”
– the internet

There are many forms of mathematical proofs. In this chapter we introduce
several basic types of proofs, with special emphasis on a technique called
induction that is invaluable to the study of discrete math.

2.1 Basic Proof Techniques

In this section we consider the following general task: given a premise X, how
do we show that a conclusion Y holds? One way is to give a direct proof.
Start with premise X, and directly deduce Y through a series of logical steps.
See Claim 2.1 for an example.

Claim 2.1. Let n be an integer. If n is even, then n2 is even. If n is odd,
then n2 is odd.

Direct proof. If n is even, then n = 2k for an integer k, and

n2 = (2k)2 = 4k2 = 2 · (2k2), which is even.

If n is odd, then n = 2k + 1 for an integer k, and

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2 · (2k2 + 2k) + 1, which is odd. �

There are also several forms of indirect proofs. A proof by contrapos-
itive starts by assuming that the conclusion Y is false, and deduce that the
premise X must also be false through a series of logical steps. See Claim 2.2
for an example.

13

14 proofs and induction

Claim 2.2. Let n be an integer. If n2 is even, then n is even.

Proof by contrapositive. Suppose that n is not even. Then by Claim 2.1, n2

is not even as well. (Yes, the proof ends here.) �

A proof by contradiction, on the other hand, assumes both that the
premise X is true and the conclusion Y is false, and reach a logical fallacy.
We give another proof of Claim 2.2 as example.

Proof by contradiction. Suppose that n2 is even, but n is odd. Applying
Claim 2.1, we see that n2 must be odd. But n2 cannot be both odd and
even! �

In their simplest forms, it may seems that a direct proof, a proof by con-
trapositive, and a proof and contradiction may just be restatements of each
other; indeed, one can always phrase a direct proof or a proof by contrapositive
as a proof by contradiction (can you see how?). In more complicated proofs,
however, choosing the “right” proof technique sometimes simplify or improve
the aesthetics of a proof. Below is an interesting use of proof by contradiction.

Theorem 2.3.
√

2 is irrational.

Proof by contradiction. Assume for contradiction that
√

2 is rational. Then
there exists integers p and q, with no common divisors, such that

√
2 = p/q

(i.e., the reduced fraction). Squaring both sides, we have:

2 =
p2

q2
⇒ 2q2 = p2

This means p2 is even, and by Claim 2.2 p is even as well. Let us replace p by
2k. The expression becomes:

2q2 = (2k)2 = 4k2 ⇒ q2 = 2k2

This time, we conclude that q2 is even, and so q is even as well. But this leads
to a contradiction, since p and q now shares a common factor of 2. �

We end the section with the (simplest form of the) AM-GM inequality.

Theorem 2.4 (Simple AM-GM inequality). Let x and y be non-negative reals.
Then,

x+ y

2
≥ √xy

2.2. PROOF BY CASES AND EXAMPLES 15

Proof by contradiction. Assume for contradiction that

x+ y

2
<
√
xy

⇒ 1
4

(x+ y)2 < xy squaring non-negative values

⇒ x2 + 2xy + y2 < 4xy

⇒ x2 − 2xy + y2 < 0

⇒ (x− y)2 < 0

But this is a contradiction since squares are always non-negative. �

Note that the proof Theorem 2.4 can be easily turned into a direct proof;
the proof of Theorem 2.3, on the other hand, cannot.

2.2 Proof by Cases and Examples

Sometimes the easiest way to prove a theorem is to split it into several cases.

Claim 2.5. (n+ 1)2 ≥ 2n for all integers n satisfying 0 ≤ n ≤ 5.

Proof by cases. There are only 6 different values of n. Let’s try them all:

n (n+ 1)2 2n

0 1 ≥ 1
1 4 ≥ 2
2 9 ≥ 4
3 16 ≥ 8
4 25 ≥ 16
5 36 ≥ 32 �

Claim 2.6. For all real x, |x2| = |x|2.

Proof by cases. Split into two cases: x ≥ 0 and x < 0.

• If x ≥ 0, then |x2| = x2 = |x|2.
• If x < 0, then |x2| = x2 = (−x)2 = |x|2. �

When presenting a proof by cases, make sure that all cases are covered! For
some theorems, we only need to construct one case that satisfy the theorem
statement.

Claim 2.7. Show that there exists some n such that (n+ 1)2 ≥ 2n.

16 proofs and induction

Proof by example. n = 6. �

Sometimes we find a counterexample to disprove a theorem.

Claim 2.8. Prove or disprove that (n+ 1)2 ≥ 2n for all n ∈ N.

Proof by (counter)example. We choose to disprove the statement. Check out
n = 6. Done. �

The next proof does not explicitly construct the example asked by the
theorem, but proves that such an example exists anyways. These type of
proofs (among others) are non-constructive.

Theorem 2.9. There exists irrational numbers x and y such that xy is ratio-
nal.

Non-constructive proof of existence. We know
√

2 is irrational from Theorem

2.3. Let z =
√

2
√

2
.

• If z is rational, then we are done (x = y =
√

2).

• If z is irrational, then take x = z =
√

2
√

2
, and y =

√
2. Then:

xy = (
√

2
√

2
)
√

2 =
√

2
√

2
√

2
=
√

2
2

= 2

is indeed a rational number. �

Here is another non-constructive existence proof. The game of Chomp is
a 2-player game played on a “chocolate bar” made up of a rectangular grid.
The players take turns to choose one block and “eat it” (remove from the
board), together all other blocks that are below it or to its right (the whole
lower right quadrant). The top left block is “poisoned” and the player who
eats this loses.

Theorem 2.10. Suppose the game of Chomp is played with rectangular grid
strictly larger than 1× 1. Player 1 (the first player) has a winning strategy.

Proof. Consider following first move for player 1: eat the lower right most
block. We have two cases1:

1 Here we use the well-known fact of 2-player, deterministic, finite-move games without
ties: any move is either a winning move (i.e., there is a strategy following this move that
forces a win), or allows the opponent to follow up with a winning move. See Theorem 2.14
later for a proof of this fact.

2.3. INDUCTION 17

• Case 1: There is a winning strategy for player 1 starting with this move.
In this case we are done.
• Case 2: There is no winning strategy for player 1 starting with this move.

In this case there is a winning strategy for player 2 following this move.
But this winning strategy for player 2 is also a valid winning strategy
for players 1, since the next move made by player 2 can be mimicked by
player 1 (here we need the fact that the game is symmetric between the
players). �

While we have just shown that Player 1 can always win in a game of
Chomp, no constructive strategy for Player 1 has been found for general rect-
angular grids (i.e., you cannot buy a strategy guide in store that tells you how
to win Chomp). For a few specific cases though, we do know good strategies
for Player 1. E.g., given a n × n square grid, Player 1 starts by removing a
n− 1×n− 1 (unique) block, leaving an L-shaped piece of chocolate with two
“arms”; thereafter, Player 1 simply mirrors Player 2’s move, i.e., whenever
Player 2 takes a bite from one of the arms, Player 1 takes the same bite on
the other arm.

A our last example, consider tilling a 8 × 8 chess board with dominoes
(2 × 1 pieces), i.e., the whole board should be covered by dominoes without
any dominoes over lapping each other or sticking out.

Q: Can we tile it?
A: Yes. Easy to give a proof by example (constructive existence proof).

Q: What if I remove one grid of the check board?
A: No. Each domino covers 2 grids, so the number of covered grids is always
even, but the board has 63 pieces (direct proof / proof by contradiction).

Q: What if I remove the top left and bottom right grids?
A: No. Each domino covers 1 grid of each colors. The top left and bottom
right grids have the same color, however, so the remaining board has more
white grids than black (or more black grids than white) (direct proof / proof
by contradiction).

2.3 Induction

We start with the most basic form of induction: induction over the natural
numbers. Suppose we want to show that a statement is true for all natural

18 proofs and induction

numbers, e.g., for all n, 1 + 2 + · · · + n = n(n + 1)/2. The basic idea is to
approach the proof in two steps:

1. First prove that the statement is true for n = 1. This is called the base
case.

2. Next prove that whenever the statement is true for case n, then it is also
true for case n+ 1. This is called the inductive step.

The base case shows that the statement is true for n = 1. Then, by repeatedly
applying the inductive step, we see that the statement is true for n = 2, and
then n = 3, and then n = 4, 5, . . . ; we just covered all the natural numbers!
Think of pushing over a long line of dominoes. The induction step is just like
setting up the dominoes; we make sure that if a domino falls, so will the next
one. The base case is then analogous to pushing down the first domino. The
result? All the dominoes fall.

Follow these steps to write an inductive proof:

1. Start by formulating the inductive hypothesis (i.e., what you want
to prove). It should be parametrized by a natural number. E.g., P (n) :
1 + 2 + · · ·+ n = n(n+ 1)/2.

2. Show that P (base) is true for some appropriate base case. Usually base
is 0 or 1.

3. Show that the inductive step is true, i.e., assume P (n) holds and prove
that P (n+ 1) holds as well.

Violà, we have just shown that P (n) holds for all n ≥ base. Note that the
base case does not always have to be 0 or 1; we can start by showing that
something is P (n) is true for n = 5; this combined with the inductive step
shows that P (n) is true for all n ≥ 5. Let’s put our new found power of
inductive proofs to the test!

Claim 2.11. For all positive integers n, 1 + 2 + · · ·+ n = n(n+ 1)/2.

Proof. Define out induction hypothesis P (n) to be true if

n∑
i=1

i =
1
2
n(n+ 1)

Base case: P (1) is clearly true by inspection.

2.3. INDUCTION 19

Inductive Step: Assume P (n) is true; we wish to show that P (n+ 1) is
true as well:

n+1∑
i=1

i =

(
n∑
i=1

i

)
+ (n+ 1)

=
1
2
n(n+ 1) + n+ 1 using P (n)

=
1
2

(n(n+ 1) + 2(n+ 1)) =
1
2

((n+ 1)(n+ 2))

This is exactly P (n+ 1). �

Claim 2.12. For any finite set S, |P(S)| = 2|S|.

Proof. Define our induction hypothesis P (n) to be true if for every finite set
S of cardinality |S| = n, |P(S)| = 2n.

Base case: P (0) is true since the only finite set of size 0 is the empty set
∅, and the power set of the empty set, P(∅) = {∅}, has cardinality 1.

Inductive Step: Assume P (n) is true; we wish to show that P (n + 1)
is true as well. Consider a finite set S of cardinality n + 1. Pick an element
e ∈ S, and consider S′ = S − {e}. By the induction hypothesis, |P(S′)| = 2n.

Now consider P(S). Observe that a set in P(S) either contains e or not;
furthermore, there is a one-to-one correspondence between the sets containing
e and the sets not containing e (can you think of the bijection?). We have just
partitioned P(S) into two equal cardinality subsets, one of which is P(S′).
Therefore |P(S)| = 2|P(S)| = 2n+1. �

Claim 2.13. The following two properties of graphs are equivalent (recall that
these are the definitions of transitivity on the graph of a relation):

1. For any three nodes x, y and z such that there is an edge from x to y
and from y to z, there exist an edge from x to z.

2. Whenever there is a path from node x to node y, there is also a direct
edge from x to y.

Proof. Clearly property 2 implies property 1. We use induction to show that
property 1 implies property 2 as well. Let G be a graph on which property
1 holds. Define our induction hypothesis P (n) to be true if for every path of
length n in G from node x to node y, there exists a direct edge from x to y.

Base case: P (1) is simply true (path of length 1 is already a direct edge).
Inductive Step: Assume P (n) is true; we wish to show that P (n+ 1) is

true as well. Consider a path of length n+ 1 from node x to node y, and let

20 proofs and induction

z be the first node after x on the path. We now have a path of length n from
node z to y, and by the induction hypothesis, a direct edge from z to y. Now
that we have a directly edge from x to z and from z to y, property 1 implies
that there is a direct edge from x to y. �

Theorem 2.14. In a deterministic, finite 2-player game of perfect informa-
tion without ties, either player 1 or player 2 has a winning strategy, i.e., a
strategy that guarantees a win.2,3

Proof. Let P (n) be the theorem statement for n-move games.
Base case: P (1) is trivially true. Since only player 1 gets to move, if

there exists some move that makes player 1 win, then player 1 has a winning
strategy; otherwise player 2 always wins and has a winning strategy (the
strategy of doing nothing).

Inductive Step: Assume P (n) is true; we wish to show that P (n+ 1) is
true as well. Consider some n+ 1-move game. After player 1 makes the first
move, we end up in a n-move game. Each such game has a winning strategy
for either player 1 or player 2 by P (n).

• If all these games have a winning strategy for player 24, then no matter
what move player 1 plays, player 2 has a winning strategy

• If one these games have a winning strategy for player 1, then player 1
has a winning strategy (by making the corresponding first move). �

In the next example, induction is used to prove only a subset of the theo-
rem to give us a jump start; the theorem can then be completed using other
techniques.

Theorem 2.15 (AM-GM Inequality). Let x1, x2, . . . , xn be a sequence of non-
negative reals. Then

1
n

∑
i

xi ≥

(∏
i

xi

)1/n

3By deterministic, we mean the game has no randomness and depends on only on player
moves (e.g., not backgammon). By finite, we mean the game is always ends in some prede-
termined fix number of moves; in chess, even though there are infinite sequences of moves
that avoid both checkmates and stalemates, many draw rules (e.g., cannot have more than
100 consecutive moves without captures or pawn moves) ensures that chess is a finite game.
By perfect information, we mean that both players knows each other’s past moves (e.g., no
fog of war).

4 By this we mean the player 1 of the n-move game (the next player to move) has a
winning strategy

2.3. INDUCTION 21

Proof. In this proof we use the notation

AM(x1, . . . , xn) =
1
n

n∑
i=1

xi GM(x1, . . . , xn) =

(
n∏
i=1

xi

)1/n

Let us first prove the AM-GM inequality for values of n = 2k. Define our
induction hypothesis P (k) to be true if AM-GM holds for n = 2k.

Base case: P (0) (i.e., n = 1) trivially holds, and P (1) (i.e., n = 2) was
shown in Theorem 2.4.

Inductive Step: Assume P (k) is true; we wish to show that P (k + 1) is
true as well. Given a sequence of length 2k+1, ~X = (x1, .., x2k+1), we split it
into two sequences ~X1 = (x1, . . . , x

k
2), ~X2 = (x2k+1, x2k+2, . . . , x2k+1). Then:

AM(~X) =
1
2

(AM(~X1) + AM(~X2))

≥ 1
2

(GM(~X1) + GM(~X2)) by the induction hypothesis P (k)

= AM(GM(~X1),GM(~X2))

≥ GM(GM(~X1),GM(~X2)) by Theorem 2.4, i.e., P (1)

=

 2k∏
i=1

xi

 1

2k
 2k+1∏
i=2k+1

xi

 1

2k

1/2

=

2k+1∏
i=1

xi

 1

2k+1

= GM(~X)

We are now ready to show the AM-GM inequality for sequences of all
lengths. Given a sequence ~X = (x1, . . . , xn) where n is not a power of 2,
find the smallest k such that 2k > n. Let α = AM(~X), and consider a new
sequence

~X ′ = (x1, . . . , xn, xn+1 = α, xn+2 = α, . . . , x2k = α)

and verify that AM(~X ′) = AM(~X) = α. Apply P (k) (the AM-GM inequality
for sequences of length 2k), we have:

22 proofs and induction

AM(~X ′) = α ≥ GM(~X ′) =

 2k∏
i=1

xi

1/2k

⇒ α2k ≥
2k∏
i=1

xi =
n∏
i=1

xi · α2k−n

⇒ αn ≥
n∏
i=1

xi

⇒ α ≥

(
n∏
i=1

xi

)1/n

= GM(~X)

This finishes our proof (recalling that α = AM(~X)). �

Note that for the inductive proof in Theorem 2.15, we needed to show both
base cases P (0) and P (1) to avoid circular arguments, since the inductive step
relies on P (1) to be true.

A common technique in inductive proofs is to define a stronger induction
hypothesis than is needed by the theorem. A stronger induction hypothesis
P (n) sometimes make the induction step simpler, since we would start each
induction step with a stronger premise. As an example, consider the game
of “coins on the table”. The game is played on a round table between two
players. The players take turns putting on one penny at a time onto the table,
without overlapping with previous pennies; the first player who cannot add
another coin losses.

Theorem 2.16. The first player has a winning strategy in the game of “coins
on the table”.

Proof. Consider the following strategy for player 1 (the first player). Start
first by putting a penny centered on the table, and in all subsequent moves,
simply mirror player 2’s last move (i.e., place a penny diagonally opposite of
player 2’s last penny). We prove by induction that player 1 can always put
down a coin, and therefore will win eventually (when the table runs out of
space).

Define the induction hypothesis P (n) to be true if on the nth move of player
1, player 1 can put down a penny according to its strategy, and leave the table
symmetric about the centre (i.e., looks the same if rotated 180 degrees).

2.3. INDUCTION 23

Base case: P (1) holds since player 1 can always start by putting one
penny at the centre of the table, leaving the table symmetric.

Inductive Step: Assume P (n) is true; we wish to show that P (n+ 1) is
true as well. By the induction hypothesis, after player 1’s nth move, the table
is symmetric. Therefore, if player 2 now puts down a penny, the diagonally
opposite spot must be free of pennies, allowing player 1 to set down a penny as
well. Moreover, after player 1’s move, the table is back to being symmetric. �

The Towers of Hanoi is a puzzle game where there is threes poles, and a
number of increasingly larger rings that are originally all stacked in order of
size on the first pole, largest at the bottom. The goal of the puzzle is to move
all the rings to another pole (pole 2 or pole 3), with the rule that:

• You may only move one ring a time, and it must be the top most ring
in one of the three potential stacks.

• At any point, no ring may be placed on top of a smaller ring.5

Theorem 2.17. The Towers of Hanoi with n rings can be solved in 2n − 1
moves.

Proof. Define the induction hypothesis P (n) to be true if the theorem state-
ment is true for n rings.

Base case: P (1) is clearly true. Just move the ring.
Inductive Step: Assume P (n) is true; we wish to show that P (n + 1)

is true as well. Number the rings 1 to n+ 1, from smallest to largest (top to
bottom on the original stack). First move rings 1 to n from pole 1 to pole
2; this takes 2n − 1 steps by the induction hypothesis P (n). Now move ring
n+ 1 from pole 1 to pole 3. Finally, move rings 1 to n from pole 2 to pole 3;
again, this takes 2n − 1 steps by the induction hypothesis P (n). In total we
have used (2n − 1) + 1 + (2n − 1) = 2n+1 − 1 moves. (Convince yourself that
this recursive definition of moves will never violate the rule that no ring may
be placed on top of a smaller ring.) �

Legends say that such a puzzle was found in a temple with n = 64 rings, left for
the priests to solve. With our solution, that would require 264−1 ≈ 1.8×1019

moves. Is our solution just silly and takes too many moves?

Theorem 2.18. The Towers of Hanoi with n rings requires at least 2n − 1
moves to solve. Good luck priests!

5Squashing small rings with large rings is bad, m’kay?

24 proofs and induction

Proof. Define the induction hypothesis P (n) to be true if the theorem state-
ment is true for n rings.

Base case: P (1) is clearly true. You need to move the ring.
Inductive Step: Assume P (n) is true; we wish to show that P (n+ 1) is

true as well. Again we number the rings 1 to n + 1, from smallest to largest
(top to bottom on the original stack). Consider ring n + 1. It needs to be
moved at some point. Without loss of generality, assume its final destination
is pole 3. Let the kth move be the first move where ring n+ 1 is moved away
from pole 1 (to pole 2 or 3), and let the k′th move be the last move where ring
n+ 1 is moved to pole 3 (away from pole 1 to pole 2),

Before performing move k, all n other rings must first be moved to the
remaining free pole (pole 3 or 2); by the induction hypothesis P (n), 2n − 1
steps are required before move k. Similarly, after performing move k, all n
other rings must be on the remaining free pole (pole 2 or 1); by the induction
hypothesis P (n), 2n−1 steps are required after move k′ to complete the puzzle.
In the best case where k = k′ (i.e., they are the same move), we still need at
least (2n − 1) + 1 + (2n − 1) = 2n+1 − 1 moves. �

Strong Induction

Taking the dominoes analogy one step further, a large domino may require
the combined weight of all the previous toppling over before it topples over as
well. The mathematical equivalent of this idea is strong induction. To prove
that a statement P (n) is true for (a subset of) positive integers, the basic idea
is:

1. First prove that P (n) is true for some base values of n (e.g., n = 1).
These are the base cases.

2. Next prove that if P (k) is true for 1 ≤ k ≤ n, then P (n + 1) is true.
This is called the inductive step.

How many base cases do we need? It roughly depends on the following factors:

• What is the theorem? Just like basic induction, if we only need P (n) to
be true for n ≥ 5, then we don’t need base cases n < 5.

• What does the induction hypothesis need? Often to show P (n + 1),
instead of requiring that P (k) be true for 1 ≤ k ≤ n, we actually need,
say P (n) and P (n − 1) to be true. Then having the base case of P (1)
isn’t enough for the induction hypothesis to prove P (3); P (2) is another
required base case.

2.3. INDUCTION 25

Let us illustrate both factors with an example.

Claim 2.19. Suppose we have an unlimited supply of 3 cent and 5 cent coins.
Then we can pay any amount ≥ 8 cents.

Proof. Let P (n) be the true if we can indeed form n cents with 3 cent and 5
cent coins.

Base case: P (8) is true since 3 + 5 = 8.
Inductive Step: Assume P (k) is true for 8 ≤ k ≤ n; we wish to show

that P (n+ 1) is true as well. This seems easy; if P (n−2) is true, then adding
another 3 cent coin gives us P (n + 1). But the induction hypothesis doesn’t
necessarily say P (n − 2) is true! For (n + 1) ≥ 11, the induction hypothesis
does apply (since n− 2 ≥ 8). For n+ 1 = 9 or 10, we have to do more work.

Additional base cases: P (9) is true since 3 + 3 + 3 = 9, and P (10) is
true since 5 + 5 = 10. �

With any induction, especially strong induction, it is very important to
check for sufficient base cases! Here is what might happen in a faulty strong
inductive proof.6 Let P (n) be true if for all groups of n women, whenever one
women is blonde, then all of the women are blonde; since there is at least one
blonde in the world, once I am done with the proof, every women in the world
will be blonde!

Base case: P (1) is clearly true.

Induction step: Suppose P (k) is true for all 1 ≤ k ≤ n; we wish to show
P (n + 1) is true as well. Given a set W of n + 1 women in which
x ∈ W is blonde, take any two strict subsets A,B (W (in particular
|A|, |B| < n+ 1) such that they both contain the blonde (x ∈ A, x ∈ B),
and A∪B = W (no one is left out). Applying the induction hypothesis
to A and B, we conclude that all the women in A and B are blonde,
and so everyone in W is blonde.

What went wrong?7

6Another example is to revisit Claim 2.19. If we use the same proof to show that P (n) is
true for all n ≥ 3, without the additional base cases, the proof will be “seemingly correct”.
What is the obvious contradiction?

7Hint: Can you trace the argument when n = 2?

26 proofs and induction

2.4 Inductive Definitions

In addition to being a proof technique, induction can be used to define math-
ematical objects. Some basic examples include products or sums of sequences:

• The factorial function n! over non-negative integers can be formally de-
fined by

0! = 1; (n+ 1)! = n! · (n+ 1)

• The cumulative sum of a sequence x1, . . . , xk, often written as S(n) =∑n
i=1 xi, can be formally defined by

S(0) = 0; S(n+ 1)! = S(n) + xn+1

Just like inductive proofs, inductive definitions start with a “base case” (e.g.,
defining 0! = 1), and has an “inductive step” to define the rest of the values
(e.g., knowing 0! = 1, we can compute 1! = 1 · 1 = 1, 2! = 1 · 2 = 2, and so
on).

Recurrence Relations

When an inductive definition generates a sequence (e.g., the factorial sequence
is 1, 1, 2, 6, 24, . . .), we call the definition a recurrence relation. We can gen-
eralize inductive definitions and recurrence relations in a way much like we
generalize inductive proofs with strong induction. For example, consider a
sequence defined by:

a0 = 1; a1 = 2; an = 4an−1 − 4an−2

According to the definition, the next few terms in the sequence will be

a2 = 4; a3 = 8

At this point, the sequence looks suspiciously as if an = 2n. Let’s prove this
by induction!

Proof. Define P (n) to be true if an = 2n.
Base case: P (0) and P (1) are true since a0 = 1 = 20, a1 = 2 = 21.
Inductive Step: Assume P (k) is true for 0 ≤ k ≤ n; we wish to show

that P (n+ 1) is true as well for n+ 1 ≥ 2. We have

an+1 = 4an − 4an−1

= 4 · 2n − 4 · 2n−1 by P (n) and P (n− 1)

= 2n+2 − 2n+1 = 2n+1

This is exactly P (n+ 1). �

2.4. INDUCTIVE DEFINITIONS 27

Remember that it is very important to check the all the base cases (espe-
cially since this proof uses strong induction). Let us consider another example:

b0 = 1; b1 = 1; bn = 4bn−1 − 3bn−2

From the recurrence part of the definition, its looks like the sequence (bn)n
will eventually out grow the sequence (an)n. Based only on this intuition, let
us conjecture that bn = 3n.

Possibly correct proof. Define P (n) to be true if bn = 3n.
Base case: P (0) is true since b0 = 1 = 30.
Inductive Step: Assume P (k) is true for 0 ≤ k ≤ n; we wish to show

that P (n+ 1) is true as well for n+ 1 ≥ 3. We have

bn+1 = 4bn − 3bn−1

= 4 · 3n − 3 · 3n−1 by P (n) and P (n− 1)

= (3n+1 + 3n)− 3n = 3n+1 �

Wow! Was that a lucky guess or what. Let us actually compute a few
terms of (bn)n to make sure. . .

b2 = 4b1 − 3b0 = 4− 3 = 1,
b3 = 4b2 − 3b1 = 4− 3 = 1,

... /
Looks like in fact, bn = 1 for all n (as an exercise, prove this by induction).
What went wrong with our earlier “proof”? Note that P (n − 1) is only well
defined if n ≥ 1, so the inductive step does not work when we try to show
P (1) (when n = 0). As a result we need an extra base case to handle P (1); a
simple check shows that it is just not true: b1 = 1 6= 31 = 3. (On the other
hand, if we define b′0 = 1, b′1 = 3, and b′n = 4b′n−1− 3b′n−2, then we can recycle
our “faulty proof” and show that b′n = 3n).

In the examples so far, we guessed at a closed form formula for the se-
quences (an)n and (bn)n, and then proved that our guesses were correct using
induction. For certain recurrence relations, there are direct methods for com-
puting a closed form formula of the sequence.

Theorem 2.20. Consider the recurrence relation an = c1an−1 + c2an−2 with
c2 6= 0, and arbitrary base cases for a0 and a1. Suppose that the polynomial
x2− (c1x+ c2) has two distinct roots r1 and r2 (these roots are non-zero since
c2 6= 0). Then there exists constants α and β such that an = αxn1 + βxn2 .

28 proofs and induction

Proof. The polynomial f(x) = x2 − (c1x + c2) is called the characteristic
polynomial for the recurrence relation an = c1an−1 + c2an−2. Its significance
can be explained by the sequence (r0, r1, . . .) where r is a root of f(x); we
claim that this sequence satisfies the recurrence relation (with base cases set
as r0 and r1). Let P (n) be true if an = rn.

Inductive Step: Assume P (k) is true for 0 ≤ k ≤ n; we wish to show
that P (n+ 1) is true as well. Observe that:

an+1 = c1an + c2an−1

= c1r
n + c2r

n−1 by P (n− 1) and P (n)

= rn−1(c1r + c2)

= rn−1 · r2 since r is a root of f(x)

= rn+1

Recall that there are two distinct roots, r1 and r2, so we actually have two
sequences that satisfy the recurrence relation (under proper base cases). In
fact, because the recurrence relation is linear (an depends linearly on an−1 and
an−2), and homogeneous (there is no constant term in the recurrence relation),
any sequence of the form an = αrn1 + βrn2 will satisfy the recurrence relation;
(this can be shown using a similar inductive step as above).

Finally, does sequences of the form an = αrn1 + βrn2 cover all possible base
cases? The answer is yes. Given any base case a0 = a∗0, a1 = a∗1, we can solve
for the unique value of α and β using the linear system:

a∗0 = αr0
1 + βr0

2 = α+ β

a∗1 = αr1
1 + βr1

2 = αr1 + βr2

The studious reader should check that this linear system always has a unique
solution (say, by checking that the determinant of the system is non-zero). �

The technique outlined in Theorem 2.20 can be extended to any recurrence
relation of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k

for some constant k; the solution is always a linear combination of k sequences
of the form (r0, r1, r2, . . .), one for each distinct root r of the characteristic
polynomial

f(x) = xk − (c1x
k−1 + c2x

k−2 + · · ·+ ck)

2.4. INDUCTIVE DEFINITIONS 29

In the case that f(x) has duplicate roots, say when a root r has multiplicity m,
in order to still have a total of k distinct sequences, we associate the following
m sequences with r:

(r0, r1, r2, . . . , rn, . . .)
(0 · r0, 1 · r1, 2 · r2, . . . , nrn, . . .)
(02 · r0, 12 · r1, 22 · r2, . . . , n2rn, . . .)

...
(0m−1 · r0, 1m−1 · r1, 2m−1 · r2, . . . , nm−1rn, . . .)

For example, if f(x) has degree 2 and has a unique root r with multiplicity 2,
then the general form solution to the recurrence is

an = αrn + βnrn

We omit the proof of this general construction. Interestingly, the same tech-
nique is used in many other branches of mathematics (for example, to solve
linear ordinary differential equations).

As an example, let us derive a closed form expression to the famous Fi-
bonacci numbers.

Theorem 2.21. Define the Fibonacci sequence inductively as

f0 = 0; f1 = 1; fn = fn−1 + fn−2

Then

fn =
1√
5

(
1 +
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n
(2.1)

Proof. It is probably hard to guess (2.1); we will derive it from scratch. The
characteristic polynomial here is f(x) = x2 − (x+ 1), which has roots

1 +
√

5
2

,
1−
√

5
2

This means the Fibonacci sequence can be expressed as

fn = α

(
1 +
√

5
2

)n
+ β

(
1−
√

5
2

)n

30 proofs and induction

Figure 2.1: Approximating the golden ratio with rectangles whose side lengths
are consecutive elements of the Fibonacci sequence. Do the larger rectangles
look more pleasing than the smaller rectangles to you?

for constants α and β. Substituting f0 = 0 and f1 = 1 gives us

0 = α+ β

1 = α

(
1 +
√

5
2

)
+ β

(
1−
√

5
2

)

which solves to α = 1/
√

5, β = −1/
√

5. �

As a consequence of (2.1), we know that for large n,

fn ≈
1√
5

(
1 +
√

5
2

)n

because the other term approaches zero. This in term implies that

lim
n→∞

fn+1

fn
=

1 +
√

5
2

which is the golden ratio. It is widely believed that a rectangle whose ratio
(length divided by width) is golden is pleasing to the eye; as a result, the
golden ratio can be found in many artworks and architectures throughout
history.

2.5. FUN TIDBITS 31

2.5 Fun Tidbits

We end the section with a collection of fun examples and anecdotes on induc-
tion.

Induction and Philosophy: the Sorites Paradox

The sorites paradox, stated below, seems to question to validity of inductive
arguments:

Base Case: One grain of sand is not a heap of sand.

Inductive Step: If n grains of sand is not a heap of sand, then n+ 1 grains
of sand is not a heap of sand either.

We then conclude that a googol (10100) grains of sand is not a heap of sand
(this is more than the number of atoms in the observable universe by some
estimates). What went wrong? The base case and the inductive step is per-
fectly valid! There are many “solutions” to this paradox, one of which is to
blame it on the vagueness of the word “heap”; the notion of vagueness is itself
a topic of interest in philosophy.

Induction and Rationality: the Traveller’s Dilemma

Two travelers, Alice and Bob, fly with identical vases; the vases get broken.
The airline company offers to reimburse Alice and Bob in the following way.
Alice and Bob, separately, is asked to quote the value of the vase at between
2 to 100 dollars. If they come up with the same value, then the airline will
reimburse both Alice and Bob at the agreed price. If they come up with
different values, m and m′ with m < m′, then the person who quoted the
smaller amount m gets m+ 2 dollars in reimbursement, while the person who
quoted the bigger amount m′ gets m− 2 dollars. What should they do?

Quoting $100 seems like a good strategy. But if Alice knows Bob will quote
$100, then Alice should quote $99. In fact, quoting quoting 99 is sometimes
better and never worse than quoting $100. We conclude that it is never
“rational” to quote $100.

But now that Alice and Bob knows that the other person will never quote
$100, quoting $98 is now a better strategy than quoting $99. We conclude
that it is never “rational” to quote $99 or above.

We can continue the argument by induction (this argument is called back-
ward induction in the economics literature) that the only rational thing for

32 proofs and induction

Alice and Bob to quote is $2. Would you quote $2 (and do you think you are
“rational”)?

Induction and Knowledge: the Muddy Children

Suppose a group of children are in a room, and some have mud on their
forehead. All the children can see everyone else’s forehead, but not their won
(no mirrors, and no touching), and so they do not know if they themselves
are muddy. The father comes into the room and announce that some of the
children are muddy, and asks if anyone knows (for sure) that they are the
ones who are muddy. Everyone says no. The father then asks the same
question again, but everyone still says no. The father keeps asking the same
question over and over again, until all of a sudden, all the muddy children in
the room simultaneously says yes, that they do know they are muddy. How
many children said yes? How many rounds of questioning has there been?

Claim 2.22. All the muddy children says yes in the nth round of questioning
(and not earlier) if and only if there are n muddy children.

Proof Sketch. Since we have not formally defined the framework of knowledge,
we are constrained to an informal proof sketch. Let P (n) be true if the claim
is true for n muddy children.

Base case: We start by showing P (1). If there is only one child that is
muddy, the child sees that everyone else is clean, and can immediately deduces
that he/she must be muddy (in order for there to be someone muddy in the
room). On the other hand, if there are 2 or more muddy children, then all
the muddy children see at least another muddy child, and cannot tell apart
whether “some kids are muddy” refer to them or the other muddy children in
the room.

Inductive Step: Assume P (k) is true for 0 ≤ k ≤ n; we wish to show
P (n + 1). Suppose there are exactly n + 1 muddy children. Since there are
more than n muddy children, it follows by the induction hypothesis that that
no one will speak before round n + 1. From the view of the muddy children,
they see n other muddy kids, and know from the start that there are either
n or n + 1 muddy children in total (depending on whether they themselves
are muddy). But, by the induction hypothesis, they know that if there were
n muddy children, then someone would have said yes in round n; since no
one has said anything yet, each muddy child deduces that he/she is indeed
muddy and says yes in round n + 1. Now suppose there are strictly more
than n+ 1 muddy children. In this case, everyone sees at least n+ 1 muddy
children already. By the induction hypothesis, every children knows from the

2.5. FUN TIDBITS 33

beginning that that no one will speak up in the first n round. Thus in n+ 1st

round, they have no more information about who is muddy than when the
father first asked the question, and thus they cannot say yes. �

Induction Beyond the Natural Numbers [Optional Material]

In this chapter we have restricted our study of induction to the natural num-
bers. Our induction hypotheses (e.g., P (n)) are always parametrized by a
natural number, and our inductive definitions (e.g., the Fibonacci sequence)
have always produced a sequence of objects indexed by the natural numbers.
Can we do induction over some other set that is not the natural numbers?
Clearly we can do induction on, say, all the even natural numbers, but what
about something more exotic, say the rational numbers, or say the set of C
programs?

Rational Numbers. Let us start with an ill-fated example of induction
on the rational numbers. We are going to prove (incorrectly) that all non-
negative rational numbers q, written in reduced form a/b, must be even in the
numerator (a) and odd in the denominator (b). Let P (q) be true if the claim
is true for rational number q.

Base Case: P (0) is true since 0 = 0/1 in its reduced form.
Inductive Step: Suppose P (k) is true for all rationals 0 ≤ k < n. We wish

to show that P (n) is true as well. Consider the rational number n/2
and let a′/b′ be its reduced form. By the induction hypothesis P (n/2),
a′ is even and b′ is odd. It follows that n, in its reduced form, is (2a′)/b,
and thus P (n) is true.

Looking carefully at the proof, we are not making the same mistakes as before
in our examples for strong induction: to show P (n), we rely only on P (n/2),
which always satisfies 0 ≤ n/2 < n, so we are not simply missing base cases.
The only conclusion is that induction just “does not make sense” for the
rational numbers.

C programs. On the other hand, we can inductively define and reason
about C programs. Let us focus on a simpler example: the set of (very limited)
arithmetic expressions defined by the following context free grammar:

expr → 0 | 1 | (expr + expr) | (expr × expr)

We can interpret this context free grammar as an inductive definition of arith-
metic expressions:

34 proofs and induction

Base Case: An arithmetic can be the digit 0 or 1.
Inductive (Recursive) Definition: An arithmetic expression can be of the

form “(expr1 +expr2)” or “(expr1×expr2)”, where expr1 and expr2 are
itself arithmetic expressions.

Notice that this inductive definition does not give us a sequence of arithmetic
expressions! We can also define the value of an arithmetic expression induc-
tively:

Base Case: The arithmetic expression “0” has value 0, and the expression
“1” has value 1.

Inductive Definition: An arithmetic expression of the form “(expr1+expr2)”
has value equal to the sum of the values of expr1 and expr2. Similarly,
an arithmetic expression of the form “(expr1 × expr2)” has value equal
to the product of the values of expr1 and expr2.

We can even use induction to prove, for example, that any expression of length
n must have value ≤ 22n

.
So how are natural numbers, rational numbers and C programs different

from one another? To make it more bewildering, did we not show a mapping
between the rational numbers and the natural numbers? The answer lies
in the way we induct through these sets or, metaphorically speaking, how
the dominoes are lined up. The formal desired property on lining up the
dominoes is called well-founded relations, and is beyond the scope of this
course. Instead, here is a thought experiment that illustrates the difference in
the inductive procedure between the numerous correct inductive proofs in this
chapter, and the (faulty) inductive proof on the rational numbers. Suppose
we want to verify that 1 + 2 + · · · + 10 = 10 · 11/2 = 55; this is shown in
Claim 2.11, our very first inductive argument. Here is how we may proceed,
knowing the inductive proof:

• We verify the inductive step, and conclude that if 1+2+· · ·+9 = 9·10/2
is true (the induction hypothesis), then 1 + 2 + · · · + 10 = 10 · 11/2 is
true. It remains to verify that 1 + 2 + · · ·+ 9 = 9 · 10/2.

• To verify that 1 + 2 + · · ·+ 9 = 9 · 10/2, we again look at the inductive
step and conclude that it remains to verify that 1 + 2 + · · ·+ 8 = 8 · 9/2.

• Eventually, after a finite number of steps (9 steps in this case), it remains
to verify the that 1 = 1, which is shown in the base case of the induction.

Similarly, to verify that “((1+(0×1))×(1+1))” is a valid arithmetic expression,
we first verify that it is of the form “(expr1 × expr2)”, and recursively verify

2.5. FUN TIDBITS 35

that “(1+(0×1))” and “(1+1)” are valid arithmetic expressions. Again, this
recursive verification will end in finite time.

Finally, let us consider our faulty example with rational numbers. To show
that the number 2/3 in reduced form is an even number over an odd number,
we need to check the claim for the number 1/3, and for that we need to check
1/6, and 1/12, and . . . ; this never ends, so we never have a complete proof of
the desired (faulty) fact.

Chapter 3

Number Theory

“Mathematics is the queen of sciences and number theory is the queen of
mathematics.”

– Carl Friedrich Gauss

Number theory is the study of numbers (in particular the integers), and is one
of the purest branch of mathematics. Regardless, it has many applications in
computer science, particularly in cryptography, the underlying tools that build
modern services such as secure e-commerce. In this chapter, we will touch on
the very basics of number theory, and put an emphasis on its applications to
cryptography.

3.1 Divisibility

A fundamental relation between two numbers is whether or not one divides
another.

Definition 3.1 (Divisibility). Let a, b ∈ Z with a 6= 0. We say that a divides
b, denoted by a|b, if there exists some k ∈ Z such that b = ak.

Example 3.2. 3|9, 5|10, but 3 - 7.

The following theorem lists a few well-known properties of divisibility.

Theorem 3.3. Let a, b, c ∈ Z.

1. If a|b and a|c then a|(b+ c)
2. If a|b then a|bc
3. If a|b and b|c then a|c (i.e., transitivity).

37

38 number theory

Proof. We show only item 1; the other proofs are similar (HW). By definition,

a|b⇒ there exist k1 ∈ Z such that b = k1a

a|c⇒ there exist k2 ∈ Z such that c = k2a

Therefore b+ c = k1a+ k2a = (k1 + k2)a, so a|(b+ c). �

Corollary 3.4. Let a, b, c ∈ Z. If a|b and a|c, then a|mb+nc for any m,n ∈ Z.

We learn in elementary school that even when integers don’t divide evenly,
we can compute the quotient and the remainder.

Theorem 3.5 (Division Algorithm). For any a ∈ Z and d ∈ N+, there exist
unique q, r ∈ Z s.t. a = dq + r and 0 ≤ r < d.

q is called the quotient and denoted by q = a div d.
r is called the remainder and denoted by r = a mod d.

For example, dividing 99 by 10 gives a quotient of q = 99 div 10 = 9 and
remainder of r = 99 mod 10 = 9, satisfying 99 = 10(9) + 9 = 10q + r. On
the other hand, dividing 99 by 9 gives a quotient of q = 99 div 9 = 11 and
remainder of r = 99 mod 9 = 0. Again, we have 99 = 11(9) + 0 = 11q + r.
Onwards to proving the theorem.

Proof. Given a ∈ Z and d ∈ N+, let q = ba/dc (the greatest integer ≤ a/d),
and let r = a − dq. By choice of q and r, we have a = dq + r. We also have
0 ≤ r < d, because q is the largest integer such that dq ≤ a. It remains to
show uniqueness.

Let q′, r′ ∈ Z be any other pairs of integers satisfying a = dq′ + r′ and
0 ≤ r′ < d. We would have:

dq + r = dq′ + r′

⇒ d · (q − q′) = r′ − r.

This implies that d|(r′−r). But−(d−1) ≤ r′−r ≤ d−1 (because 0 ≤ r, r′ < d),
and the only number divisible by d between −(d−1) and d−1 is 0. Therefore
we must have r′ = r, which in turn implies that q′ = q. �

Greatest Common Divisor

Definition 3.6 (Greatest Common Divisor). Let a, b ∈ Z with a, b not both
0. The greatest common divisor of a and b, denoted by gcd(a, b), is the largest
integer d such that d|a and d|b.

3.1. DIVISIBILITY 39

Example 3.7.

gcd(4, 12) = gcd(12, 4) = gcd(−4,−12) = gcd(−12, 4) = 4

gcd(12, 15) = 3 gcd(3, 5) = 1 gcd(20, 0) = 20

Euclid designed one of the first known algorithms in history (for any prob-
lem) to compute the greatest common divisor:

Algorithm 1 EuclidAlg(a, b), a, b,∈ N+, a, b not both 0

if b = 0 then
return a;

else
return EuclidAlg(b, a mod b);

end if

Example 3.8. Let’s trace Euclid’s algorithm on inputs 414 and 662.

EuclidAlg(414, 662)→ EuclidAlg(662, 414)→ EuclidAlg(414, 248)
→ EuclidAlg(248,166)→ EuclidAlg(166, 82)→ EuclidAlg(82, 2)
→ EuclidAlg(2, 0)→ 2

The work for each step is shown below:

662 = 414(1) + 248
414 = 248(1) + 166
248 = 166(1) + 82
166 = 82(2) + 2
82 = 41(2) + 0

We now prove that Euclid’s algorithm is correct in two steps. First, we
show that if the algorithm terminates, then it does output the correct greatest
common divisor. Next, we show that Euclid’s algorithm always terminates
(and does so rather quickly).

Lemma 3.9. Let a, b ∈ N , b 6= 0. Then gcd(a, b) = gcd(b, a mod b).

Proof. It is enough to show that the common divisors of a and b are the
same as the common divisors of b and (a mod b). If so, then the two pairs of
numbers must also share the same greatest common divisor.

40 number theory

By the division algorithm, there exist unique q, r ∈ Z such that a = bq+ r
and 0 ≤ r < b. Also recall that by definition, r = a mod b = a− bq. Let d be
a common divisor of a and b, i.e., d divides both a and b. Then d also divides
r = abq (by Corollary 3.4). Thus d is a common divisor of b and r. Similarly,
let d′ be a common divisor of b and r. Then d also divides a = bq + r. Thus
d is a common divisor of a and b. �

Theorem 3.10. Euclid’s algorithm (EuclidAlg) produces the correct output
if it terminates.

Proof. This can be shown by induction, using Lemma 3.9 as the inductive
step. (What would be the base case?) �

We now show that Euclid’s algorithm always terminates.

Claim 3.11. For every two recursive calls made by EuclidAlg, the first
argument a is halved.

Proof. Suppose EuclidAlg(a, b) is called. If b ≤ a/2, then in the next re-
cursive call EuclidAlg(b, a mod b) already has the property that the first
argument is halved. Otherwise, we have b > a/2, so a mod b ≤ a/2. Then af-
ter two recursive calls (first EuclidAlg(b, a mod b), then EuclidAlg(a mod
b, b mod (a mod b))), we have the property that the first argument is halved.

�

The next theorem follows directly from Claim 3.11.

Theorem 3.12. Euclid’s algorithm, on input EuclidAlg(a, b) for a, b ∈ N+,
a, b not both 0, always terminates. Moreover it terminates in time proportional
to log2 a.

We end the section with a useful fact on greatest common divisors.

Theorem 3.13. Let a, b ∈ N+, a, b not both 0. Then, there exist s, t ∈ Z
such that sa+ tb = gcd(a, b).

Theorem 3.13 shows that we can give a certificate for the greatest common
divisor. From Corollary 3.4, we already know that any common divisor of a
and b also divides sa + tb. Thus, if we can identify a common divisor d of
a and b, and show that d = sa + tb for some s and t, this demonstrates d
is in fact the greatest common divisor (d = gcd(a, b)). And there is more
good news! This certificate can be produced by slightly modifying Euclid’s
algorithm (often called the extended Euclid’s algorithm); this also constitutes

3.2. MODULAR ARITHMETIC 41

as a constructive proof of Theorem 3.13. We omit the proof here and give an
example instead.

Example 3.14. Suppose we want to find s, t ∈ Z such that s(252) + t(198) =
gcd(252, 198) = 18. Run Euclid’s algorithm, but write out the equation a =
bq + r for each recursive call of EuclidAlg.

EuclidAlg(252, 198) 252 = 1(198) + 54 (3.1)
→EuclidAlg(198, 54) 198 = 3(54) + 36 (3.2)
→EuclidAlg(54, 36) 54 = 1(36) + 18 (3.3)
→EuclidAlg(36, 18) 36 = 2(18) + 0 (3.4)

We can construct s and t by substituting the above equations “backwards”:

18 = 1(54)− 1(36) by (3.3)
= 1(54)− (1(198)− 3(54)) by (3.2)
= 4(54)− 1(198)
= 4(252− 1(198))− 1(198) by (3.1)
= 4(252)− 5(198)

We conclude that gcd(252, 198) = 18 = 4(252)− 5(198).

3.2 Modular Arithmetic

Modular arithmetic, as the name implies, is arithmetic on the remainders of
integers, with respect to a fixed divisor. A central idea to modular arithmetic
is congruences: two integers are considered “the same” if they have the same
remainder with respect to the fixed divisor.

Definition 3.15. Let a, b ∈ Z, m ∈ N+. We say that a and b are congruent
modular m, denoted by a ≡ b (mod m), if m|(a− b) (i.e., if there exists k ∈ Z
such that a− b = km).

As a direct consequence, we have a ≡ a (mod m) for any m ∈ N+.

Claim 3.16. a ≡ b (mod m) if and only if a and b have the same remainder
when divided by m, i.e., a mod m = b mod m.

Proof. We start with the if direction. Assume a and b have the same remainder
when divided by m. That is, a = q1m+ r and b = q2m+ r. Then we have

a− b = (q1 − q2)m ⇒ m|(a− b)

42 number theory

For the only if direction, we start by assuming m|(a−b). Using the division
algorithm, let a = q1m + r1, b = q2m + r2 with 0 ≤ r1, r2 < m. Because
m|(a− b), we have

m|(q1m+ r1 − (q2m+ r2))

Since m clearly divides q1m and q2m, it follows by Corollary 3.4 that

m|r1 − r2

But −(m − 1) ≤ r1 − r2 ≤ m − 1, so we must have a mod m = r1 = r2 =
b mod m. �

The next theorem shows that addition and multiplication “carry over” to
the modular world (specifically, addition and multiplication can be computed
before or after computing the remainder).

Theorem 3.17. If a ≡ b (mod m), and c ≡ d (mod m) then

1. a+ c ≡ b+ d (mod m)
2. ac ≡ bd (mod m)

Proof. For item 1, we have

a ≡ b (mod m) and c ≡ d (mod m)
⇒ m|(a− b) and m|(c− d)
⇒ m|((a− b) + (c− d)) by Corollary 3.4
⇒ m|((a+ c)− (b+ d))
⇒ a+ c ≡ b+ d (mod m)

For item 2, using Claim 3.16, we have unique integers r and r′ such that

a = q1m+ r b = q2m+ r

c = q′1m+ r′ d = q′2m+ r′

This shows that

ac = q1m · q′1m+ q1mr
′ + q′1mr + rr′

bd = q2m · q′2m+ q2mr
′ + q′2mr + rr′

which clearly implies that m|(ac− bd). �

Clever usage of Theorem 3.17 can simplify many modular arithmetic cal-
culations.

3.2. MODULAR ARITHMETIC 43

Example 3.18.

11999 ≡ 1999 ≡ 1 (mod 10)

9999 ≡ (−1)999 ≡ −1 ≡ 9 (mod 10)

7999 ≡ 49499 · 7 ≡ (−1)499 · 7 ≡ −7 ≡ 3 (mod 10)

Note that exponentiation was not included in Theorem 3.17. Because
multiplication does carry over, we have ae ≡ (a mod n)e (mod n); we have
already used this fact in the example. However, in general we cannot perform
modular operations on the exponent first, i.e., ae 6≡ ae mod n (mod n).

Applications of Modular Arithmetic

In this section we list some applications of modular arithmetic, and, as we
promised, give an example of an application to cryptography.

Hashing. The age-old setting that call for hashing is simple. How do we
efficiently retrieve (store/delete) a large number of records? Take for exam-
ple student records, where each record has a unique 10-digit student ID. We
cannot (or do not want) a table of size 1010 to index all the student records
indexed by their ID. The solution? Store the records in an array of size N
where N is a bit bigger than the expected number of students. The record for
student ID is then stored in position h(ID) where h is a hash function that
maps IDs to {1, . . . , N}. One very simple hash-function would be

h(k) = k mod N

ISBN. Most published books today have a 10 or 13-digit ISBN number; we
will focus on the 10-digit version here. The ISBN identifies the country of
publication, the publisher, and other useful data, but all these information
are stored in the first 9 digits; the 10thdigit is a redundancy check for errors.

The actual technical implementation is done using modular arithmetic.
Let a1, . . . , a10 be the digits of an ISBN number. In order to be a valid ISBN
number, it must pass the check:

a1 + 2a2 + ..9a9 + 10a10 ≡ 0 (mod 11)

This test would detect an error if:

• a single digit was changed, or

44 number theory

• a transposition occurred, i.e., two digits were swapped (this is why in
the check, we multiply ai by i).

If 2 or more errors occur, the errors may cancel out and the check may still
pass; fortunately, more robust solutions exists in the study of error correcting
codes.

Casting out 9s. Observe that a number is congruent to the sum of its digits
modulo 9. (Can you show this? Hint: start by showing 10n ≡ 1 (mod 9) for
any n ∈ N+.) The same fact also holds modulo 3. This allows us to check
if the computation is correct by quickly performing the same computation
modulo 9. (Note that incorrect computations might still pass, so this check
only increase our confidence that the computation is correct.)

Pseudorandom sequences. Randomized algorithms require a source of
random numbers; where do they come from in a computer? Computers today
take a small random “seed” (this can be the current time, or taken from the
swap space), and expand it to a long string that “looks random”. A standard
technique is the linear congruential generator (LCG):

• Choose a modulus m ∈ N+,
• a multiplier a ∈ 2, 3, . . . ,m− 1, and
• an increment c ∈ Zm = {0, 1, . . . ,m− 1}

Given a seed x0 ∈ Zm, the LCG outputs a “random looking” sequence induc-
tively defined by

xn+1 = (axn + c) mod m

The LCG is good enough (i.e., random enough) for some randomized al-
gorithms. Cryptographic algorithms, however, have a much more stringent
requirement for “random looking”; it must be the case that any adversar-
ial party, any hacker on the internet, cannot tell apart a “pseudorandom”
string from a truly random string. Can you see why the LCG is not a good
pseudorandom generator? (Hint: the LCG follows a very specific pattern)

Encryption Encryption solves the classical cryptographic problem of secure
communication. Suppose that Alice wants to send a private message to Bob;
however, the channel between Alice and Bob is insecure, in the sense that there
is an adversary Eve who listens in on everything sent between Alice and Bob
(later in the course we will discuss even more malicious behaviors than just
listening in). To solves this problem, Alice and Bob agrees on a “secret code”

3.2. MODULAR ARITHMETIC 45

(an encryption scheme) so that Alice may “scramble” her messages to Bob (an
encryption algorithm) in a way that no one except Bob may “unscramble” it
(a decryption algorithm).

Definition 3.19 (Private-Key Encryption Scheme). A triplet of algorithms
(Gen,Enc,Dec), a message space M, and a key space K, together is called a
private-key encryption scheme if:

1. The key-generation algorithm, Gen is a randomized algorithm that re-
turns a key, k ← Gen, such that k ∈ K.

2. The encryption algorithm, Enc : K ×M→ {0, 1}∗ is an algorithm that
takes as input a key k ∈ K and a plain-text m ∈ M (the message), and
outputs a cipher-text c = Enck(m) ∈ {0, 1}∗.

3. The decryption algorithm, Dec : K × {0, 1}∗ →M is an algorithm that
takes as input a key k ∈ K and a cipher-text c ∈ {0, 1}∗, and output a
plain-text m ∈M.

4. The scheme is correct ; that is, decrypting a valid cipher-text should
output the original plain text. Formally we require that for all m ∈M,
k ∈ K, Deck(Enck(m)) = m.

To use a private encryption scheme, Alice and Bob first meet in advance
and run k ← Gen together to agree on the secret key k. The next time Alice
has a private message m for Bob, she sends c = Enck(m) over the insecure
channel. Once Bob receives the cipher-text c, he decrypts it by running m =
Deck(c) to read the original message.

Example 3.20 (Caesar Cipher). The Caesar Cipher is a private-key encryp-
tion scheme used by Julius Caesar to communicate with his generals; encryp-
tion is achieved by “shifting” each alphabet by some fixed amount (the key).
Here is the formal description of the scheme. Let M = {A, . . . , Z}∗ and
K = {0, . . . , 25}:

• Gen outputs a uniformly random key k from K = {0, . . . , 25}.
• Encryption shifts the alphabet of each letter in the plain-text by k:

Enck(m1m2 · · ·mn) = c1c2 · · · cn,where ci = mi + k mod 26

• Decryption shifts each letter back:

Deck(c1c2 · · · cn) = m1m2 · · · cn,where mi = ci − k mod 26

46 number theory

For example, if k = 3, then we substitute each letter in the plain-text according
to the following table:

plain-text: ABCDEFGHIJKLMNOPQRSTUVWXYZ
cipher-text: DEFGHIJKLMNOPQRSTUVWXYZABC

The message GOODMORNING encrypts to JRRGPRUQLQJ.

Claim 3.21. The Caesar Cipher is a private-key encryption scheme.

Proof. Correctness is trivial, since for all alphabets m and all keys k,

m = ((m+ k) mod 26− k) mod 26 �

Nowadays, we know the Caesar Cipher is not a very good encryption
scheme. There are numerous freely available programs or applets on-line that
can crack the Caesar Cipher. (In fact, you can do it too! After all, there
are only 26 keys to try.) The next example is on the other extreme; it is a
perfectly secure private-key encryption scheme. We wait until a later chapter
to formalize the notion of perfect secrecy; for now, we simply point out that at
least the key length of the one-time pad grows with the message length (i.e.,
there is not just 26 keys).

Example 3.22 (One-Time Pad). In the one-time pad encryption scheme, the
key is required to be as long as the message. During encryption, the entire key
is used to mask the plain-text, and therefore “perfectly hides” the plain-text.
Formally, let M = {0, 1}n, K = {0, 1}n, and

• Gen samples a key k = k1k2 · · · kn uniformly from K = {0, 1}n.

• Enck(m1m2 · · ·mn) = c1c2 · · · cn, where ci = mi+ki mod 2 (equivalently
ci = mi ⊕ ki where ⊕ denotes XOR).

• Deck(c1c2 · · · cn) = m1m2 · · ·mn, where mi = ci − ki mod 2 (again, it is
equivalent to say mi = ci ⊕ ki).

To encrypt the messagem = 0100000100101011 under key k = 1010101001010101,
simply compute

plain-text: 0100000100101011
⊕ key: 1010101001010101

cipher-text: 1110101101111110

Claim 3.23. The one-time pad is a private-key encryption scheme.

3.3. PRIMES 47

Proof. Again correctness is trivial, since for mi ∈ {0, 1} and all ki ∈ {0, 1},
mi = ((mi + ki) mod 2− ki) mod 2 (equivalently, mi = mi ⊕ ki ⊕ ki). �

Private-key encryption is limited by the precondition that Alice and Bob
must meet in advance to (securely) exchange a private key. Is this an inherent
cost for achieving secure communication?

First let us ask: can parties communicate securely without having secrets?
Unfortunately, the answer is impossible. Alice must encrypt her message based
on some secret key known only to Bob; otherwise, everyone can run the same
decryption procedure as Bob to view the private message. Does this mean
Alice has to meet with Bob in advance?

Fortunately, the answer this time around is no. The crux observation is
that maybe we don’t need the whole key to encrypt a message. Public-key
cryptography, first proposed by Diffie and Hellman in 1976, splits the key into
two parts: an encryption key, called public-key, and a decryption key, called
the secret-key. In our example, this allows Bob to generate his own public
and private key-pair without meeting with Alice. Bob can then publish his
public-key for anyone to find, including Alice, while keeping his secret-key to
himself. Now when Alice has a private message for Bob, she can encrypt it
using Bob’s public-key, and be safely assured that only Bob can decipher her
message.

To learn more about public-key encryption, we need more number theory;
in particular, we need to notion of prime numbers.

3.3 Primes

Primes are numbers that have the absolute minimum number of divisors; they
are only divisible by themselves and 1. Composite numbers are just numbers
that are not prime. Formally:

Definition 3.24 (Primes and Composites). Let p ∈ N and p ≥ 2. p is prime
if its only positive divisors are 1 and p. Otherwise p is composite (i.e., there
exists some a such that 1 < a < n and a|n).

Note that the definition of primes and composites exclude the numbers 0
and 1. Also note that, if n is composite, we may assume that there exists
some a such that 1 < a ≤

√
n and a|n. This is because given a divisor d|n

with 1 < d < n, then 1 < n/d < n is also a divisor of n; moreover, one of d or
n/d must be at most

√
n.

48 number theory

Example 3.25. The first few primes are: 2,3,5,7,11,13,17,19.
The first few composites are: 4,6,8,9,10,12,14,15.

How can we determine if a number n is prime or not? This is called a
primality test. Given the above observation, we can try to divide n by every
positive integer ≤

√
n; this is not very efficient, considering that in today’s

cryptographic applications, we use 1024 or 2048-bit primes. A deterministic
polynomial-time algorithm to for primality tests was not known until Agarwal,
Saxena and Kayal constructed the first such algorithm in 2002; even after
several improvements, the algorithm is still not fast enough to practically
feasible. Fortunately, there is a much more efficient probabilistic algorithm
for primality test; we will discuss this more later.

Distribution of Primes

How many primes are there? Euclid first showed that there are infinitely many
primes.

Theorem 3.26 (Euclid). There are infinitely many primes.

Proof. Assume the contrary that there exists a finite number of primes p1, . . . , pn.
Consider q = p1p2 · · · pn + 1. By assumption, q is not prime. Let a > 1 be the
smallest number that divides q. Then a must be prime (or else it could not
be the smallest, by transitivity of divisibility), i.e., a = pi for some i (since
p1, . . . , pn are all the primes).

We have pi|q. Since q = p1p2 · · · pn + 1 and pi clearly divides p1p2 · · · pn,
we conclude by Corollary 3.4 that pi|1, a contradiction. �

Not only are there infinitely many primes, primes are actually common
(enough).

Theorem 3.27 (Prime Number Theorem). Let π(N) be the number of primes
≤ N . Then

lim
N→∞

π(N)
N/ lnN

= 1

We omit the proof, as it is out of the scope of this course. We can interpret
the theorem as follows: there exists (small) constants c1 and c2 such that

c1N/logN ≤ π(N) ≤ c2N/logN

If we consider n-digit numbers, i.e., 0 ≤ x < 10n, roughly 10n/ log 10n = 10n/n
numbers are prime. In other words, roughly 1/n fraction of n-digit numbers
are prime.

3.3. PRIMES 49

Given that prime numbers are dense (enough), here is a method for finding
a random n-digit prime:

• Pick a random (odd) n-digit number, x.
• Efficiently check if x is prime (we discuss how later).
• If x is prime, output x.
• Otherwise restart the procedure.

Roughly order n restarts would suffice.

Relative Primality

Primes are numbers that lack divisors. A related notion is relative primality,
where a pair of number lacks common divisors.

Definition 3.28 (Relative Primality). Two positive integers a, b ∈ N+ are
relatively prime if gcd(a, b) = 1.

Clearly, a (standalone) prime is relatively prime to any other number ex-
cept a multiple of itself. From Theorem 3.13 (i.e., from Euclid’s algorithm),
we have an alternative characterization of relatively prime numbers:

Corollary 3.29. Two positive integers a, b ∈ N+ are relatively prime if and
only if there exists s, t ∈ Z such that sa+ tb = 1.

Corollary 3.29 has important applications in modular arithmetic; it guar-
antees the existence of certain multiplicative inverses (so that we may talk of
modular division).

Theorem 3.30. Let a, b ∈ N+. There exists an element a−1 such that a−1·a ≡
1 (mod b) if and only if a and b are relatively prime.

a−1 is called the inverse of a modulo b; whenever such an element exists,
we can “divide by a” modulo b by multiplying by a−1. For example, 3 is the
inverse of 7 modulo 10, because 7 · 3 ≡ 21 ≡ 1 (mod 10). On the other hand,
5 does not have an inverse modulo 10 (without relying on Theorem 3.30, we
can establish this fact by simply computing 5 · 1, 5 · 2, . . . , 5 · 9 modulo 10).

Proof of Theorem 3.30. If direction. If a and b are relatively prime, then
there exists s, t such that sa+ tb = 1 (Corollary 3.29). Rearranging terms,

sa = 1− tb ≡ 1 (mod b)

therefore s = a−1.

50 number theory

Only if direction. Assume there exists an element s such that sa ≡
1 (mod b). By definition this means there exists t such that sa − 1 = tb.
Rearranging terms we have sa+ (−t)b = 1, which implies gcd(a, b) = 1. �

Relative primality also has consequences with regards to divisibility.

Lemma 3.31. If a and b are relatively prime and a|bc, then a|c.

Proof. Because a and b are relatively prime, there exists s and t such that
sa + tb = 1. Multiplying both sides by c gives sac + tbc = c. Since a divides
the left hand side (a divides a and bc), a must also divides the right hand side
(i.e., c). �

The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic states that we can factor any positive
integer uniquely as a product of primes. We start with a lemma before proving
the fundamental theorem.

Lemma 3.32. If p is prime and p |
∏n
i=1 ai, then there exist some 1 ≤ j ≤ n

such that p|aj.

Proof. We proceed by induction. Let P (n) be the statement: For every prime
p, and every sequence a1, . . . an, if p |

∏n
i=1 ai, then there exist some 1 ≤ j ≤ n

such that p|aj .
Base case: P (1) is trivial (j = 1).
Inductive step: Assuming P (n), we wish to show P (n + 1). Consider

some prime p and sequence a1, .., an+1 s.t. p|
∏n+1
i=1 ai. We split into two cases,

either p | an+1 or gcd(p, an+1) = 1 (if the gcd was more than 1 but less than
p, then p would not be a prime).

In the case that p | an+1 we are immediately done (j = n+ 1). Otherwise,
by Lemma 3.31, p |

∏n
i=1 ai. We can then use the induction hypothesis to

show that there exists 1 ≤ j ≤ n such that p|aj . �

Theorem 3.33 (Fundamental Theorem of Arithmetic). Every natural number
n > 1 can be uniquely factored into a product of a sequence of non-decreasing
primes, i.e., the unique prime factorization.

For example, 300 = 2× 2× 3× 5× 5.

Proof. We proceed by induction. Let P (n) be the statement “n has a unique
prime factorization”.

Base case: P (2) is trivial, with the unique factorization 2 = 2.

3.3. PRIMES 51

Inductive Step: Assume P (k) holds for all 2 ≤ k ≤ n− 1. We will show
P (n) (for n ≥ 3). If n is prime, then we have the factorization of n = n,
and this is unique (anything else would contradict that n is prime). If n is
composite, we show existence and uniqueness of the factorization separately:

Existence. If n is composite, then there exists a, b such that 2 ≤ a, b ≤ n−1
and n = ab. Apply the induction hypothesis P (a) and P (b) to get their
respective factorization, and “merge them” for a factorization of n.

Uniqueness. Suppose the contrary that n has two different factorizations,

n =
n∏
i=1

pi =
m∏
j=1

qj

where n,m ≥ 2 (otherwise n would be prime). Because p1|n =
∏
j qj ,

by Lemma 3.32 there is some j0 such that p1|qj0 . Since p1 and qj0 are
both primes, we have p1 = qj0 . Consider the number n′ = n/p1 which
can be factorized as

n′ =
n∏
i=2

pi =
m∏

j=1,j 6=j0

qj

Since 1 < n′ = n/p1 < n, the induction hypothesis shows that the two
factorizations of n′ are actually the same, and so the two factorization
of n are also the same (adding back the terms p1 = qj0). �

Open Problems

Number theory is a field of study that is rife with (very hard) open problems.
Here is a small sample of open problems regarding primes.

Goldbach’s Conjecture, first formulated way back in the 1700’s, states
that any positive even integer other than 2 can be expressed as the sum of
two primes. For example 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5 and 22 = 5 + 17.
With modern computing power, the conjecture has been verified for all even
integers up to ≈ 1017.

The Twin Prime Conjecture states that there are infinitely pairs of
primes that differ by 2 (called twins). For example, 3 and 5, 5 and 7, 11 and
13 or 41 and 43 are all twin primes. A similar conjecture states that there
are infinitely many safe primes or Sophie-Germain primes — pairs of primes
of the form p and 2p+ 1 (p is called the Sophie-Germain prime, and 2p+ 1 is
called the safe prime). For example, consider 3 and 7, 11 and 23, or 23 and
47. In cryptographic applications, the use of safe primes sometimes provide
more security guarantees.

52 number theory

3.4 The Euler φ Function

Definition 3.34 (The Euler φ Function). Given a positive integer n ∈ N+,
define φ(n) to be the number of integers x ∈ N+, x ≤ n such that gcd(x, n) =
1, i.e., the number of integers that are relatively prime with n.

For example, φ(6) = 2 (the relatively prime numbers are 1 and 5), and
φ(7) = 6 (the relatively prime numbers are 1, 2, 3, 4, 5, and 6). By definition
φ(1) = 1 (although this is rather uninteresting). The Euler φ function can be
computed easily on any integer for which we know the unique prime factor-
ization (computing the unique prime factorization itself may be difficult). In
fact, if the prime factorization of n is n = pk11 p

k2
2 · · · pkm

m , then

φ(n) = n
∏
i

(
1− 1

pi

)
=
∏
i

(pki
i − p

ki−1
i) (3.5)

While we won’t prove (3.5) here (it is an interesting counting exercise), we do
state and show the following special cases.

Claim 3.35. If p is a prime, then φ(p) = p − 1. If n = pq where p 6= q are
both primes, then φ(n) = (p− 1)(q − 1).

Proof. If p is prime, then the numbers 1, 2, . . . , p − 1 are all relatively prime
to p. Therefore φ(p) = p− 1.

If n = pq with p 6= q both prime, then among the numbers 1, 2, . . . , n = pq,
there are exactly q multiples of p (they are p, 2p, . . . , n = qp). Similarly, there
are exactly p multiples of q. Observe that that other than multiples of p or q,
the rest of the numbers are relatively prime to n; also observe that we have
counted n = pq twice. Therefore

φ(n) = n− p− q + 1 = pq − p− q + 1 = (p− 1)(q − 1) �

The Euler φ function is especially useful in modular exponentiation, due
to Euler’s Theorem:

Theorem 3.36. Given a, n ∈ N+, if gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n)

Proof. Let X = {x | x ∈ N+, x ≤ n, gcd(x, n) = 1}. By definition |X| = φ(n).
Let aX = {ax mod n | x ∈ X}. For example, if n = 10, then X = {1, 3, 7, 9},
and

aX = {3 mod 10, 9 mod 10, 21 mod 10, 27 mod 10} = {3, 9, 1, 7}

3.4. THE EULER φ FUNCTION 53

By Theorem 3.30, X is the set of all numbers that have multiplicative inverses
modulo n; this is useful in the rest of the proof.

We first claim that X = aX (this does indeed hold in the example). We
prove this by showing X ⊆ aX and aX ⊆ X.

X ⊆ aX. Given x ∈ X, we will show that x ∈ aX. Consider the number
a−1x mod n (recall that a−1 is the multiplicative inverse of a, and exists
since gcd(a, n) = 1). We claim that a−1x mod n ∈ X, since it has the
multiplicative inverse x−1a. Consequently, a(a−1x) ≡ x (mod n) ∈ aX.

aX ⊆ X. We can give a similar argument as above1. Given y ∈ aX, we will
show that y ∈ X. This can be done by constructing the multiplicative
inverse of y. We know y is of the form ax for some x ∈ X, so the
multiplicative inverse of y is x−1a−1.

Knowing aX = X, we have:∏
x∈X

x ≡
∏
y∈aX

y ≡
∏
x∈X

ax (mod n)

Since each x ∈ X has an inverse, we can multiply both sides with all those
inverses (i.e., divide by

∏
x∈X s):

1 ≡
∏
x∈X

a (mod n)

Since |X| = φ, we have just shown that aφ(n) ≡ 1 (mod n). �

We give two corollaries.

Corollary 3.37 (Fermat’s Little Theorem). If p is a prime and gcd(a, p) = 1,
then ap−1 ≡ 1 (mod p).

Proof. This directly follows from the theorem and φ(p) = p− 1. �

Corollary 3.38. If gcd(a, n) = 1, then

ax ≡ ax mod φ(n) (mod n)

1In class we showed this differently. Observe that |aX| ≤ |X| (since elements in aX are
“spawned” from X). Knowing that X ⊆ aX, |aX| ≤ |X|, and the fact that these are finite
sets allows us to conclude that aX ⊆ X (in fact we may directly conclude that aX = X).

54 number theory

Proof. Let x = qφ(n) + r be the result of dividing x by φ(n) with remainder
(recall that r is exactly x mod φ(n)). Then

ax = aqφ(N)+r = (aφ(N))q · ar ≡ 1q · ar = ax mod φ(n) (mod n) �

Example 3.39. Euler’s function can speed up modular exponentiation by a
lot. Let n = 21 = 3× 7. We have φ(n) = 2× 6 = 12. Then

2999 ≡ 2999 mod 12 = 23 = 8 (mod 21)

Application to Probabilistic Primality Checking

We have mentioned on several occasions that there is an efficient probabilistic
algorithm for checking primality. The algorithm, on input a number n, has
the following properties:

• If n is prime, then algorithm always outputs YES

• If n is not prime, then with some probability, say 1/2, the algorithm
may still output YES incorrectly.

Looking at it from another point of view, if the algorithm ever says n is not
prime, then n is definitely not prime. With such an algorithm, we can ensure
that n is prime with very high probability: run the algorithm 200 times,
and believe n is prime if the output is always YES. If n is prime, we always
correctly conclude that it is indeed prime. If n is composite, then we would
only incorrectly view it as a prime with probability (1/2)200 (which is so small
that is more likely to encounter some sort of hardware error).

How might we design such an algorithm? A first approach, on input n, is to
pick a random number 1 < a < n and output YES if and only if gcd(a, n) = 1.
Certainly if n is prime, the algorithm will always output YES. But if n is not
prime, this algorithm may output YES with much too high probability; in
fact, it outputs YES with probability ≈ φ(n)/n (this can be too large if say
n = pq, and φ(n) = (p− 1)(q − 1)).

We can design a similar test relying on Euler’s Theorem. On input n, pick a
random 1 < a < n and output YES if and only if an−1 ≡ 1 (mod n). Again, if
n is prime, this test will always output YES. What if n is composite? For most
composite numbers, the test does indeed output YES with sufficiently small
probability. However there are some composites, called Carmichael numbers
or pseudo-primes, on which this test always outputs YES incorrectly (i.e., a
Carmichael number n has the property that for all 1 < a < n, an−1 ≡ 1
(mod n), yet n is not prime).

3.4. THE EULER φ FUNCTION 55

By adding a few tweaks to the above algorithm, we would arrive at the
Miller-Rabin primality test that performs well on all numbers (this is out of
the scope of this course). For now let us focus on computing an−1. The näıve
way of computing an−1 requires n−1 multiplications — in that case we might
as well just divide n by all numbers less than n. A more clever algorithm is
to do repeated squaring :

Algorithm 2 ExpMod(x, e, n), computing xe mod n

if e = 0 then
return 1;

else
return ExpMod(x, e div 2, n)2 · xe mod 2 mod n;

end if

The correctness of ExpMod is based on the fact the exponent e can be
expressed as (e div 2) · 2 + e mod 2 by the division algorithm, and therefore

xe = x(e div 2)·2+e mod 2 =
(
xe div 2

)2
· xe mod 2

To analyse the efficiency of ExpMod, observe that xe mod 2 is easy to compute
(it is either x1 = x or x0 = 1), and that the recursion has depth ≈ log2 e since
the exponent e is halved in each recursive call. The intuition behind ExpMod
is simple. By repeated squaring, it is must faster to compute exponents that
are powers of two, e.g., to compute x16 requires squaring four times: x→ x2 →
x4 → x8 → x16. Exponents that are not powers of two can first be split into
sums of powers of two; this is the same concept as binary representations for
those who are familiar with it. As an example, suppose we want to compute
419 mod 13. First observe that 19 = 16 + 2 + 1 (the binary representation of
19 would be 10112). By repeated squaring, we first compute:

42 mod 13 = 16 mod 13 = 3 44 mod 13 = 32 mod 13 = 9

48 mod 13 = 92 mod 13 = 3 416 mod 13 = 32 mod 13 = 9

Now we can compute

419 mod 13 = 416+2+1 mod 13 = 416 · 42 · 41 mod 13
= 9 · 3 · 4 mod 13 = 4

The takeaway of this section is that primality testing can be done ef-
ficiently, in time polynomial in the length (number of digits) of the input
number n (i.e., in time polynomial in log n).

56 number theory

3.5 Public-Key Cryptosystems and RSA

In this section we formally define public-key cryptosystems. We describe the
RSA cryptosystem as an example, which relies on many number theoretical
results in this chapter.

Recall our earlier informal discussion on encryption: Alice would like to
send Bob a message over a public channel where Eve is eavesdropping. A
private-key encryption scheme would require Alice and Bob to meet in advance
to jointly generate and agree on a secret key. On the other hand a public-
key encryption scheme, first proposed by Diffie and Hellman, has two keys:
a public-key for encrypting, and a private-key for decrypting. Bob can now
generate both keys by himself, and leave the public-key out in the open for
Alice to find; when Alice encrypts her message using Bob’s public-key, only
Bob can decrypt and read the secret message.

Definition 3.40. A triplet of algorithms (Gen,Enc,Dec), a key space K ⊆
Kpk×Ksk (each key is actually a pair of public and secret keys), and a sequence
of message spaces indexed by public-keys M = {Mpk}pk∈Kpk

, together is
called a public-key encryption scheme if:

1. The key-generation algorithm, Gen is a randomized algorithm that re-
turns a pair of keys, (pk, sk) ← Gen, such that (pk, sk) ∈ K (and so
pk ∈ Kpk, sk ∈ Ksk).

2. The encryption algorithm takes as input a public-key pk ∈ Kpk and
a plain-text m ∈ Mpk (the message), and outputs a cipher-text c =
Encpk(m) ∈ {0, 1}∗.

3. The decryption algorithm takes as input a secret-key k ∈ Ksk and a
cipher-text c ∈ {0, 1}∗, and output a plain-text m = Decsk(c).

4. The scheme is correct ; that is, decrypting a valid cipher-text with the
correct pair of keys should output the original plain text. Formally we
require that for all (pk, sk) ∈ K, m ∈Mpk, Decsk(Encpk(m)) = m.

The RSA Cryptosystem

The RSA cryptosystem, conceived by Rivest, Shamir and Adleman, uses mod-
ular exponentiation to instantiate a public-key crypto-system. Given a secu-
rity parameter n, the plain RSA public-key encryption scheme is as follows:

• Gen(n) picks two random n-bit primes p and q, set N = pq, and pick
a random e such that 1 < e < n, gcd(e, φ(N)) = 1. The public key is

3.5. PUBLIC-KEY CRYPTOSYSTEMS AND RSA 57

pk = (N, e), while the secret key is sk = (p, q) (the factorization of N).
N is called the modulus of the scheme.

• Through the definition of Gen, we already have a implicit definition of
the key-space K. The message space for a public-key pk = (N, e) is:
Mpk = {m | 0 < m < N, gcd(m,N) = 1}.

• Encryption and decryption are defined as follows:

Encpk(m) = me mod N

Decsk(c) = cd mod N,where d = e−1 mod φ(N)

Correctness of RSA

First and foremost we should verify that all three algorithms, Gen, Enc and
Dec, can be efficiently computed. Gen involves picking two n-bit primes, p and
q, and an exponent e relatively prime to pq; we covered generating random
primes in Section 3.3, and choosing e is simple: just make sure e is not a
multiple of p or q (and a random e would work with very high probability).
Enc and Dec are both modular exponentiations; we covered that in Section 3.4.
Dec additionally requires us to compute d = e−1 mod φ(N); knowing the
secret-key, which contains the factorization of N , it is easy to compute φ(N) =
(p − 1)(q − 1), and then compute d using the extended GCD algorithm and
Theorem 3.30.

Next, let us verify that decryption is able to recover encrypted messages.
Given a message m satisfying 0 < m < N and gcd(m,N) = 1, we have:

Dec(Enc(m)) = ((me) mod N)d mod N

= med mod N

= med mod φ(N) mod N by Corollary 3.38

= m1 mod N since d = e−1 mod φ(N)
= m mod N = m

This calculation also shows why the message space is restricted to {m | 0 <
m < N, gcd(m,N) = 1}: A message m must satisfy gcd(m,N) = 1 so that we
can apply Euler’s Theorem, and m must be in the range 0 < m < N so that
when we recover m mod N , it is actually equal to the original message m.

Security of RSA

Let us informally discuss the security of RSA encryption. What stops Eve
from decrypting Alice’s messages? The assumption we make is that without

58 number theory

knowing the secret key, it is hard for Eve to compute d = e−1 mod φ(N). In
particular, we need to assume the factoring conjecture: there is no efficient
algorithm that factor numbers N that are products of two equal length primes
p and q (formally, efficient algorithm means any probabilistic algorithm that
runs in time polynomial in the length of N , i.e., the number of digits of N).
Otherwise Eve would be able to recover the secret-key and decrypt in the same
way as Bob would.

There is another glaring security hole in the our description of the RSA
scheme: the encryption function is deterministic. What this means is that
once the public-key is fixed, the encryption of each message is unique! For
example, there is only one encryption for the word “YES”, and one encryption
for the word “NO”, and anyone (including Eve) can compute these encryptions
(it is a public-key scheme after all). If Alice ever sends an encrypted YES or
NO answer to Bob, Eve can now completely compromise the message.

One solution to this problem is for Alice to pad each of her message m with
a (fairly long) random string; she than encrypts the resulting padded message
m′ as before, outputting the cipher-text (m′)e mod N (now the whole encryp-
tion procedure is randomized). This type of “padded RSA” is implemented
in practice.

On generating secret keys. Another security concern (with any key-based
scheme) is the quality of randomness used to generate the secret-keys. Let us
briefly revisit the Linear Congruential Generator, a pseudorandom generator
that we remarked should not be used for cryptographic applications. The
LCG generates a sequence of numbers using the recurrence:

x0 = random seed
xi = ax+ c mod M

In C++, we have a = 22695477, c = 1, and M = 232. Never mind the fact
that the sequence (x0, x1, x2, . . .) has a pattern (that is not very random at
all). Because there are only 232 starting values for x0, we can simply try them
all, and obtain the secret-key of any RSA key-pair generated using LCG and
C++.2

Padded RSA

We have already discussed why a padded scheme for RSA is necessary for se-
curity. A padded scheme also has another useful feature; it allows us to define

2 In Java M = 248, so the situation improves a little bit.

3.5. PUBLIC-KEY CRYPTOSYSTEMS AND RSA 59

a message space that does not depend on the choice of the public-key (e.g., it
would be tragic if Alice could not express her love for Bob simply because Bob
chose the wrong key). In real world implementations, designing the padding
scheme is an engineering problem with many practical considerations; here we
give a sample scheme just to illustrate how padding can be done. Given a se-
curity parameter n, a padded RSA public-key encryption scheme can proceed
as follows:

• Gen(n) picks two random n-bit primes, p, q > 2n−1, and set N = pq,
and pick a random e such that 1 < e < n, gcd(e, φ(N)) = 1. The public
key is pk = (N, e), while the secret key is sk = (p, q) (the factorization
of N). N is called the modulus of the scheme.

• Through the definition of Gen, we already have a implicit definition of
the key-space K. The message space is simply M = {m | 0 ≤ m <
2n} = {0, 1}n, the set of n-bit strings.

• Encryption is probabilistic. Given public-key pk = (N, e) and a message
m ∈M, pick a random (n− 2)-bit string r and let r‖m be the concate-
nation of r and m, interpreted as an integer 0 ≤ r‖m < 22n−2 < N .
Furthermore, if r‖m = 0 or if gcd(r‖m,N) = 1, we re-sample the ran-
dom string r until it is not so. The output cipher-text is then

Encpk(m) = (r‖m)e mod N

• Decryption can still be deterministic. Given secret-key sk and cipher-
text c, first decrypt as in plain RSA, i.e., m′ = cd mod N where d =
e−1 mod φ(N), and output the n right-most bits of m′ as the plain-text.

RSA signatures

We end the section with another cryptographic application of RSA: digital
signatures. Suppose Alice wants to send Bob a message expressing her love,
“I love you, Bob”, and Alice is so bold and confident that she is not afraid of
eavesdroppers. However Eve is not just eavesdropping this time, but out to
sabotage the relationship between Alice and Bob. She sees Alice’s message,
and changes it to “I hate you, Bob” before it reaches Bob. How can cryptog-
raphy help with this sticky situation? A digital signature allows the sender of
a message to “sign” it with a signature; when a receiver verifies the signature,
he or she can be sure that the message came from the sender and has not been
tampered.

60 number theory

In the RSA signature scheme, the signer generates keys similar to the RSA
encryption scheme; as usual, the signer keeps the secret-key, and publishes the
public-key. To sign a message m, the signer computes:

σm = md mod N

Anyone that receives a message m along with a signature σ can perform the
following check using the public-key:

σe mod N ?= m

The correctness and basic security guarantees of the RSA signature scheme
is the same as the RSA encryption scheme. Just as before though, there are
a few security concerns with the scheme as described.

Consider this attack. By picking the signature σ first, and computing
m = σe anyone can forge a signature, although the message m is most likely
meaningless (what if the attacker gets lucky?). Or suppose Eve collects two
signatures, (m1, σ1) and (m2, σ2); now she can construct a new signature
(m = m1 ·m2 mod N, σ = σ1 ·σ2 mod N) (very possible that the new message
m is meaningful). To prevents these two attacks, we modify the signature
scheme to first transform the message using a “crazy” function H (i.e., σm =
H(m)d mod N).

Another important consideration is how do we sign large messages (e.g.,
lengthy documents)? Certainly we do not want to increase the size of N . If
we apply the same solution as we did for encryption — break the message into
chunks and sign each chunk individually — then we run into another security
hole. Suppose Alice signed the sentences “I love you, Bob” and “I hate freezing
rain” by signing the individual words; then Eve can collect and rearrange these
signatures to produce a signed copy of “I hate you, Bob”. The solution again
relies on the crazy hash function H: we require H to accept arbitrary large
messages as input, and still output a hash < N . A property that H must
have is collision resistance: it should be hard to find two messages, m1 and
m2, that hash to the same thing H(m1) = H(m2) (we wouldn’t want “I love
you, Bob” and “I hate you, Bob” to share the same signature).

Chapter 4

Counting

“How do I love thee? Let me count the ways.”
– Elizabeth Browning

Counting is a basic mathematical tool that has uses in the most diverse
circumstances. How much RAM can a 64-bit register address? How many
poker hands form full houses compared to flushes? How many ways can ten
coin tosses end up with four heads? To count, we can always take the time
to enumerate all the possibilities; but even just enumerating all poker hands
is already daunting, let alone all 64-bit addresses. This chapter covers several
techniques that serve as useful short cuts for counting.

4.1 The Product and Sum Rules

The product and sum rules represent the most intuitive notions of counting.
Suppose there are n(A) ways to perform task A, and regardless of how task
A is performed, there are n(B) ways to perform task B. Then, there are
n(A) · n(B) ways to perform both task A and task B; this is the product
rule. This can generalize to multiple tasks, e.g., n(A) · n(B) · n(C) ways to
perform task A, B, and C, as long as the independence condition holds, e.g.,
the number of ways to perform task C does not depend on how task A and B
are done.

Example 4.1. On an 8× 8 chess board, how many ways can I place a pawn
and a rook? First I can place the pawn anywhere on the board; there are 64
ways. Then I can place the rook anywhere except where the pawn is; there
are 63 ways. In total, there are 64× 63 = 4032 ways.

61

62 counting

Example 4.2. On an 8× 8 chess board, how many ways can I place a pawn
and a rook so that the rook does not threaten the pawn? First I can place
the rook anywhere on the board; there are 64 ways. At the point, the rook
takes up on square, and threatens 14 others (7 in its row and 7 in its column).
Therefore I can then place the pawn on any of the 64− 14− 1 = 49 remaining
squares. In total, there are 64× 49 = 3136 ways.

Example 4.3. If a finite set S has n elements, then |P(S)| = 2n. We have
seen a proof of this by induction; now we will see a proof using the product
rule. P(S) is the set of all subsets of S. To form a subset of S, each of the n
elements can either be in the subset or not (2 ways). Therefore there are 2n

possible ways to form unique subsets, and so |P(S)| = 2n.

Example 4.4. How many legal configurations are there in the towers of
Hanoi? Each of the n rings can be on one of three poles, giving us 3n config-
urations. Normally we would also need to count the height of a ring relative
to other rings on the same pole, but in the case of the towers of Hanoi, the
rings sharing the same pole must be ordered in a unique fashion: from small
at the top to large at the bottom.

The sum rule is probably even more intuitive than the product rule.
Suppose there are n(A) ways to perform task A, and distinct from these,
there are n(B) ways to perform task B. Then, there are n(A) + n(B) ways
to perform task A or task B. This can generalize to multiple tasks, e.g.,
n(A) + n(B) + n(C) ways to perform task A, B, or C, as long as the distinct
condition holds, e.g., the ways to perform task C are different from the ways
to perform task A or B.

Example 4.5. To fly from Ithaca to Miami you must fly through New York
or Philadelphia. There are 5 such flights a day through New York, and 3 such
flights a day through Philadelphia. How many different flights are there in a
day that can take you from Ithaca to get to Miami? The answer is 5 + 3 = 8.

Example 4.6. How many 4 to 6 digit pin codes are there? By the product
rule, the number of distinct n digit pin codes is 10n (each digit has 10 possi-
bilities). By the sum rule, we have 104 + 105 + 106 number of 4 to 6 digit pin
codes (to state the obvious, we have implicitly used the fact that every 4 digit
pin code is different from every 5 digit pin code).

4.2. PERMUTATIONS AND COMBINATIONS 63

4.2 Permutations and Combinations

Our next tools for counting are permutations and combinations. Given n
distinct objects, how many ways are there to “choose” r of them? Well, it
depends on whether the r chosen objects are ordered or not. For example,
suppose we deal three cards out of a standard 52-card deck. If we are dealing
one card each to Alice, Bob and Cathy, then the order of the cards being dealt
matters; this is called a permutation of 3 cards. On the other hand, if we
are dealing all three cards to Alice, then the order of the cards being dealt
does not matter; this is called a combination or 3 cards.

Permutations

Definition 4.7. A permutation of a set A is an ordered arrangement of the
elements in A. An ordered arrangement of just r elements from A is called
an r-permutation of A. For non-negative integers r ≤ n, P (n, r) denotes the
number of r-permutations of a set with n elements.

What is P (n, r)? To form an r-permutation from a set A of n elements, we
can start by choosing any element of A to be the first in our permutation; there
are n possibilities. The next element in the permutation can be any element of
A except the one that is already taken; there are n−1 possibilities. Continuing
the argument, the final element of the permutation will have n − (r − 1)
possibilities. Applying the product-rule, we have

Theorem 4.8.

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!
.1

Example 4.9. How many one-to-one functions are there from a set A with
m elements to a set B with n elements? If m > n we know there are no such
one-to-one functions. If m ≤ n, then each one-to-one function f from A to
B is a m-permutation of the elements of B: we choose m elements from B
in an ordered manner (e.g., first chosen element is the value of f on the first
element in A). Therefore there are P (n,m) such functions.

Combinations

Let us turn to unordered selections.
1Recall that 0! = 1.

64 counting

Definition 4.10. An unordered arrangement of r elements from a set A is
called an r-combination of A. For non-negative integers r ≤ n, C(n, r) or

(
n
r

)
denotes the number of r-combinations of a set with n elements. C(n, r) is also
called the binomial coefficients (we will soon see why).

For example, how many ways are there to put two pawns on a 8× 8 chess
board? We can select 64 possible squares for the first pawn, and 63 possible
remaining squares for the second pawn. But now we are over counting, e.g.,
choosing squares (b5, c8) is the same as choosing (c8, b5) since the two pawns
are identical. Therefore we divide by 2 to get the correct count: 64× 63/2 =
2016. More generally,

Theorem 4.11.
C(n, r) =

n!
(n− r)!r!

Proof. Let us express P (n, r) in turns of C(n, r). It must be that P (n, r) =
C(n, r)P (r, r), because to select an r-permutation from n elements, we can
first selected an unordered set of r elements, and then select an ordering of
the r elements. Rearranging the expression gives:

C(n, r) =
P (n, r)
P (r, r)

=
n!/(n− r)!

r!
=

n!
(n− r)!r!

�

Example 4.12. How many poker hands (i.e., sets of 5 cards) can be dealt
from a standard deck of 52 cards? Exactly C(52, 5) = 52!/(47!5!).

Example 4.13. How many full houses (3 of a kind and 2 of another) can be
dealt from a standard deck of 52 cards? Recall that we have 13 denominations
(ace to king), and 4 suites (spades, hearts, diamonds and clubs). To count the
number of full houses, we may

• First pick a denomination for the “3 of a kind”: there are 13 choices.

• Pick 3 cards from this denomination (out of 4 suites): there are C(4, 3) =
4 choices.

• Next pick a denomination for the “2 of a kind”: there are 12 choices left
(different from the “3 of a kind”).

• Pick 2 cards from this denomination: there are C(4, 2) = 6 choices.

So in total there are 13 ∗ 4 ∗ 12 ∗ 6 = 3744 possible full houses.

4.3. COMBINATORIAL IDENTITIES 65

Figure 4.1: Suppose there are 5 balls and 3 urns. Using the delimiter idea,
the first row represents the configuration (1, 3, 1) (1 ball in the first urn, 3
balls in the second , and 1 ball in the third). The second row represents the
configuration (4, 0, 1) (4 balls in the first urn, none in the second, and 1 ball
in the third). In general, we need to choose 2 positions out of 7 as delimiters
(the rest of the positions are the 5 balls).

Balls and Urns

How many ways are there to put n balls into k urns? This classical counting
problem has many variations. For our setting, we assume that the urns are
distinguishable (e.g., numbered). If the balls are also distinguishable, then
this is a simple application of the product rule: each ball can be placed into
k possible urns, resulting in a total of kn possible placements.

What if the balls are indistinguishable? Basically we need to assign a
number to each urn, representing the numbers of balls in the urn, so that
the sum of the numbers is n. Suppose we line up the n balls, and put k − 1
delimiters between some of the adjacent balls. Then we would have exactly
what we need: n balls split among k distinct urns (see Figure 4.1). The number
of ways to place the delimiters is as simple as choosing k−1 delimiters among
n+ k − 1 positions (total number of positions for both balls and delimiters),
i.e., C(n+ k − 1, k − 1).

Example 4.14. How many solutions are there to the equation x+y+z = 100,
if x, y, z ∈ N? This is just like having 3 distinguishable urns (x, y and z) and
100 indistinguishable balls, so there are C(102, 2) solutions.

4.3 Combinatorial Identities

There are many identities involving combinations. These identities are fun to
learn because they often represents different ways of counting the same thing;

66 counting

one can also prove these identities by churning out the algebra, but that is
boring. We start with a few simple identities.

Lemma 4.15. If 0 ≤ k ≤ n, then C(n, k) = C(n, n− k).

Proof. Each unordered selection of k elements has a unique complement: an
unordered selection of n − k elements. So instead of counting the number of
selections of k elements from n, we can count the number of selections of n−k
elements from n (e.g., to deal 5 cards from a 52 card deck is the same as to
throw away 52− 5 = 47 cards).

An algebraic proof of the same fact (without much insight) goes as follows:

C(n, k) =
n!

(n− k)!k!
=

n!
(n− (n− k))!(n− k)!

= C(n, n− k) �

Lemma 4.16 (Pascal’s Identity). If 0 < k ≤ n, then C(n+ 1, k) = C(n, k −
1) + C(n, k).

Proof. Here is another way to choose k elements from n + 1 total elements.
Either the n+ 1st element is chosen or not:

• If it is, then it remains to choose k−1 elements from the first n elements.
• If it isn’t, then we need to choose all k elements from the first n elements.

By the sum rule, we have C(n+ 1, k) = C(n, k − 1) + C(n, k). �

Pascals identity, along with the initial conditions C(n, 0) = C(n, n) = 1,
gives a recursive way of computing the binomial coefficients C(n, k). The
recursion table is often written as a triangle, called Pascal’s Triangle; see
Figure 4.2.

Here is another well-known identity.

Lemma 4.17.
n∑
k=0

C(n, k) = 2n.

Proof. Let us once again count the number of possible subsets of a set of n
elements. We have already seen by induction and by the product rule that
there are 2n such subsets; this is the RHS.

Another way to count is to use the sum rule:

of subsets =
n∑
k=0

of subsets of size k =
n∑
k=0

C(n, k)

This is the LHS. �

4.3. COMBINATORIAL IDENTITIES 67

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

+

=

1(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
Figure 4.2: Pascal’s triangle contains the binomial coefficients C(n, k) ordered
as shown in the figure. Each entry in the figure is the sum of the two entries
on top of it (except the entries on the side which are always 1).

The next identity is more tricky:

Lemma 4.18.
n∑
k=0

kC(n, k) = n2n−1.

Proof. The identity actually gives two ways to count the following problem:
given n people, how many ways are there to pick a committee of any size, and
then pick a chairperson of the committee? The first way to count is:

• Use the sum rule to count committees of different sizes individually.

• For committees of size k, there are C(n, k) ways of choosing the com-
mittee, and independently, k ways of choosing a chairperson from the
committee.

• This gives a total of
n∑
k=0

kC(n, k) possibilities; this is the LHS.

The second way to count is:

• Pick the chairman first; there are n choices.

• For the remaining n − 1 people, each person can either be part of the
committee or not; there are 2n−1 possibilities.

• This gives a total of n2n−1 possibilities; this is the RHS. �

A similar trick can be used to prove Vandermonde’s Identity.

68 counting

Lemma 4.19 (Vandermondes Identity). If r ≤ m and r ≤ n, then

C(m+ n, r) =
r∑

k=0

C(m, r − k)C(n, k)

Proof. Let M be a set with m elements and N be a set with n elements. Then
the LHS represents the number of possible ways to pick r elements from M
and N together. Equivalently, we can count the same process by splitting into
r cases (the sum rule): let k range from 0 to r, and consider picking r − k
elements from M and k elements from M . �

The next theorem explains the name “binomial coefficients”: the combina-
tion function C(n, k) are also the coefficient of powers of the simplest binomial,
(x+ y).

Theorem 4.20 (The Binomial Theorem). For n ∈ N,

(x+ y)n =
n∑
k=0

C(n, k)xn−kyk

Proof. If we manually expand (x+y)n, we would get 2n terms with coefficient
1 (each term corresponds to choosing x or y from each of the n factors). If we
then collect these terms, how many of them have the form xn−kyk? Terms of
that form must chooses n−k many x’s, and k many y’s. Because just choosing
the k many y’s specifies the rest to be x’s, there are C(n, k) such terms. �

Example 4.21. What is the coefficient of x13y7 in the expansion of (x−3y)20?
We write (x− 3y)20 as (x+ (−3y))20 and apply the binomial theorem, which
gives us the term C(20, 7)x13(−3y)7 = −37C(20, 7)x13y7.

If we substitute specific values for x and y, the binomial theorem gives us
more combinatorial identities as corollaries.

Corollary 4.22.
n∑
k=0

C(n, k) = 2n, again.

Proof. Simply write 2n = (1+1)n and expand using the binomial theorem. �

Corollary 4.23.
n∑
k=1

(−1)k+1C(n, k) = 1.

4.4. INCLUSION-EXCLUSION PRINCIPLE 69

Proof. Expand 0 = 0n = (1− 1)n using the binomial theorem:

0 =
n∑
k=0

C(n, k)1n−k(−1)k

= C(n, 0) +
n∑
k=1

(−1)kC(n, k)

Rearranging terms gives us

C(n, 0) = −
n∑
k=1

(−1)kC(n, k) =
n∑
k=1

(−1)k+1C(n, k)

This proves the corollary since C(n, 0) = 1. �

4.4 Inclusion-Exclusion Principle

Some counting problems simply do not have a closed form solution (drats!). In
this section we discuss an counting tool that also does not give a closed form
solution. The inclusion-exclusion principle can been seen as a generalization
of the sum rule.

Suppose there are n(A) ways to perform task A and n(B) ways to perform
task B, how many ways are there to perform task A or B, if the methods to
perform these tasks are not distinct? We can cast this as a set cardinality
problem. Let X be the set of ways to perform A, and Y be the set of ways to
perform B. Then:

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

This can be observed using the Venn Diagram. The counting argument goes
as follows: To count the number of ways to perform A or B (|X ∪ Y |) we
start by adding the number of ways to perform A (i.e., |X|) and the number
of ways to perform B (i.e., |Y |). But if some of the ways to perform A and B
are the same (|X ∩ Y |), they have been counted twice, so we need to subtract
those.

Example 4.24. How many positive integers ≤ 100 are multiples of either 2 or
5? Let A be the set of multiples of 2 and B be the set of multiples of 5. Then
|A| = 50, |B| = 20, and |A ∩B| = 10 (since this is the number of multiples of
10). By the inclusion-exclusion principle, we have 50 + 20− 10 = 60 multiples
of either 2 or 5.

70 counting

What if there are more tasks? For three sets, we can still gleam from the
Venn diagram that

|X ∪ Y ∪ Z| = |X|+ |Y |+ |Z| − |X ∩ Y | − |X ∩ Z| − |Y ∩ Z|+ |X ∩ Y ∩ Z|

More generally,

Theorem 4.25. Let A1, . . . , An be finite sets. Then,∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
k=1

(−1)k+1
∑

I,I⊆{1,...,n},|I|=k

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ =
∑

I⊆{1,...,n}

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
Proof. Consider some x ∈ ∪iAi. We need to show that it gets counted exactly
one in the RHS. Suppose that x is contained in exactly m of the starting sets
(A1 to An), 1 ≤ m ≤ n. Then for each k ≤ m, x appears in C(m, k) many
k-way intersections (that is, if we look at

∣∣⋂
i∈I Ai

∣∣ for all |I| = k, x appears
in C(m, k) many terms). Therefore, the number of times x gets counted by
the inclusion-exclusion formula is exactly

m∑
k=1

(−1)k+1C(m, k)

and this is 1 by Corollary 4.23. �

Example 4.26. How many onto functions are there from a set A with n
elements to a set B with m ≤ n elements? We start by computing the number
of functions that are not onto. Let Ai be the set of functions that miss the ith

element of B (i.e., does not have the ith element of B in its range). ∪mi=1Ai
is then the set of functions that are not onto. By the inclusion exclusion
principle, we have:∣∣∣∣∣

m⋃
i=1

Ai

∣∣∣∣∣ =
m∑
k=1

(−1)k+1
∑

I⊆{1,...,m},|I|=k

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
For any k and I with |I| = k, observe that ∩i∈IAi is the set of functions that
miss a particular set of k elements, therefore∣∣∣∣∣⋂

i∈I
Ai

∣∣∣∣∣ = (m− k)n

4.4. INCLUSION-EXCLUSION PRINCIPLE 71

Also observe that there are exactly C(m, k) many different I’s of size k. Using
these two facts, we have∣∣∣∣∣

m⋃
i=1

Ai

∣∣∣∣∣ =
m∑
k=1

(−1)k+1
∑

I⊆{1,...,m},|I|=k

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
=

m∑
k=1

(−1)k+1C(m, k)(m− k)n

Finally, to count the number of onto functions, we take all possible functions
(mn many) and subtract that functions that are not onto:

mn −
m∑
k=1

(−1)k+1C(m, k)(m− k)n = mn +
m∑
k=1

(−1)kC(m, k)(m− k)n

=
m∑
k=0

(−1)kC(m, k)(m− k)n

where the last step relies on (−1)kC(m, k)(m − k)n = mn when k = 0. This
final expression

∑m
k=0(−1)kC(m, k)(m− k)n is closely related to the Sterling

number of the second kind, another counting function (similar to C(n, k)) that
is out of the scope of this course.

Counting the Complement

Counting the complement follows the same philosophy as the inclusion-exclusion
principle: sometimes it is easier to over-count first, and subtract some later.
This is best explained by examples.

Example 4.27. How many standard poker hands (5 cards from a 52-card
deck) contains at least a pair2? We could count the number of hands that
are (strict) pairs, two-pairs, three-of-a-kinds, full houses and four-of-a-kinds,
and sum up the counts. It is easier, however, to count all possible hands, and
subtract the number of hands that do not contain at least a pair, i.e., hands
where all 5 cards have different ranks:

C(52, 5)︸ ︷︷ ︸
all possible hands

− C(13, 5)︸ ︷︷ ︸
the five ranks

· 45︸︷︷︸
the suits

2 By this we mean hands where at least two cards share the same rank. A slightly more
difficult question (but perhaps more interesting in a casino) is how many hands is better or
equal to a pair? (i.e., a straight does not contain a pair, but is better than a pair.)

72 counting

4.5 Pigeonhole Principle

In this final section, we cover the pigeonhole principle: a proof technique that
relies on counting. The principle says that if we place k + 1 or more pigeons
into k pigeon holes, then at least one pigeon hole contains 2 or more pigeons.
For example, in a group of 367 people, at least two people must have the same
birthday (since there are a total of 366 possible birthdays). More generally,
we have

Lemma 4.28 (Pigeonhole Principle). If we place n (or more) pigeons into k
pigeon holes, then at least one box contains dn/ke or more pigeons.

Proof. Assume the contrary that every pigeon hole contains ≤ dn/ke−1 < n/k
many pigeons. Then the total number of pigeons among the pigeon holes would
be strictly less than k(n/k) = n, a contradiction. �

Example 4.29. In a group of 800 people, there are at least d800/366e = 3
people with the same birthday.

Chapter 5

Probability

“. . . the chances of survival are 725 . . . to 1.”
– C-3PO

Originally motivated by gambling, the study of probability is now funda-
mental to a wide variety of subjects, including social behavior (e.g., economics
and game theory) and physical laws (e.g., quantum mechanics and radioactive
decay). In computer science, it is essential for studying randomized algorithms
(e.g., randomized quick sort, primality testing), average-case problems (e.g.,
spam detection), and cryptography.

What is probability? What does it mean that that a fair coin toss comes
up heads with probability 50%? One interpretation is Bayesian: “50%” is
a statement of our beliefs, and how much we are willing to bet on one coin
toss. Another interpretation is more experimental: “50%” means that if we
toss the coin 10 million times, it will come up heads in roughly 5 million
tosses. Regardless of how we view probability, this chapter introduces the
mathematical formalization of probability, accompanied with useful analytical
tools to go with the formalization.

5.1 Probability Spaces

In this class, we focus on discrete probability spaces.1

Definition 5.1 (Probability Space). A probability space is a pair (S, f)
where S is a countable set called the sample space, and f : S → [0, 1] is

1Without formally defining this term, we refer to random processes whose outcomes are
discrete, such as dice rolls, as opposed to picking a uniformly random real number from zero
to one.

73

74 probability

called the probability mass function.2 Additionally, f satisfies the property∑
x∈S f(x) = 1.

Intuitively, the sample space S corresponds to the set of possible states
that the world could be in, and the probability mass function f assigns a
probability from 0 to 1 to each of these states. To model our conventional
notion of probability, we require that the total probability assigned by f to
all possible states should sum up to 1.

Definition 5.2 (Event). Given a probability space (S, f), an event is simply
a subset of S. The probability of an event E, denoted by Pr(S,f)[E] = Pr[E], is
defined to be

∑
x∈E f(x). In particular, the event that includes “everything”,

E = S, has probability Pr[S] = 1.

Even though events and probabilities are not well-defined without a prob-
ability space (e.g., see the quote of the chapter), by convention, we often omit
S and f in our statements when they are clear from context.

Example 5.3. Consider rolling a regular 6-sided die. The sample space is
S = {1, 2, 3, 4, 5, 6}, and the probability mass function is constant: f(x) = 1/6
for all x ∈ S. The event of an even roll is E = {2, 4, 6}, and this occurs with
probability

Pr[E] =
∑

x∈{2,4,6}

f(x) =
1
2

The probability mass function used in the above example has a (popular)
property: it assigns equal probability to all the elements in the sample space.

Equiprobable Probability Spaces

Definition 5.4. A probability space (S, f) is equiprobable if f is constant,
i.e., there exists a constant ε such that f(x) = ε for all x ∈ S. In this case we
call f an equiprobable mass function.

The most common examples of probability spaces, such as rolling a dice,
flipping a coin and dealing a deck of (well-shuffled) cards, are all equiproba-
ble. The next theorem reveals a common structure (and limitation) among
equiprobable probability spaces.

Theorem 5.5. Let (S, f) be an equiprobable probability space. Then S is
finite, f takes on the constant value 1/|S|, and the probability of an event
E ⊆ S is |E|/|S|.

2 By [0, 1] we mean the real interval {x | 0 ≤ x ≤ 1}

5.1. PROBABILITY SPACES 75

In other words, calculating probabilities under an equiprobable probability
space is just counting.

Proof. Let f take on the constant value ε. First note that ε 6= 0, because it
would force

∑
x∈S f(x) = 0, violating the definition of mass functions. Next

note that S cannot be infinite, because it would force
∑

x∈S f(x) =
∑

x∈S ε =
∞, again violating the definition of mass functions.

Knowing that S is finite, we can then deduce that:

1 =
∑
x∈S

f(x) =
∑
x∈S

ε = |S|ε

⇒ |S| = 1
ε

It follows that the probability of an event E is

Pr[E] =
∑
x∈E

ε =
∑
x∈E

1
|S|

=
|E|
|S|

�

Example 5.6. What is the probability that a random hand of five cards in
poker is a full house? We have previously counted the number of possible five-
card hands and the number of possible full houses (Example 4.12 and 4.13).
Since each hand is equally likely (i.e., we are dealing with an equiprobable
probability space), the probability of a full house is:

of possible full houses
of possible hands

=
C(13, 1)C(4, 3)C(12, 1)C(4, 2)

C(52, 5)
≈ 0.144%

Theorem 5.5 highlights two limitations of equiprobable probability spaces.
Firstly, the sample space must be finite; as we will soon see, some natural
random processes require an infinite sample space. Secondly, the (equally
assigned) probability of any event must be rational. That is, we cannot have
an event that occurs with probability 1/

√
2; this is required, for example, to

formalize game theory in a satisfactory way. Despite these limitations, most
of the time, we will deal with equiprobable probability spaces.

Infinite Sample Spaces

How might we construct a probability mass function for an infinite space?
For example, how might one pick a random positive integer (S = N+)? We
illustrate some possibilities (and subtleties) with the following examples.

76 probability

Example 5.7. We may have the probability space (N+, f) where f(n) = 1/2n.
This corresponds with the following experiment: how many coin tosses does it
take for a head to come up?3 We expect this to be a well-defined probability
space since it corresponds to a natural random process. But to make sure, we
verify that

∑
n∈N+ 1/2n = 1.4

Example 5.8. Perhaps at a whim, we want to pick the positive integer n
with probability proportional to 1/n2. In this case we need to normalize
the probability. Knowing that

∑
n∈N+ 1/n2 = π2/6,5 we may assign f(n) =

(6/π2)(1/n2), so that
∑

n∈N+ f(n) = 1.

Example 5.9. Suppose now we wish to pick the positive integer n with prob-
ability proportional to 1/n. This time we are bound to fail, since the series
1 + 1/2 + 1/3 + · · · diverges (approaches ∞), and cannot be normalized.

Probabilities

Now that probability spaces are defined, we give a few basic properties of
probability:

Claim 5.10. If A and B are disjoint events (A ∩ B = ∅) then Pr[A ∪ B] =
Pr[A] + Pr[B].

Proof. By definition,

Pr[A ∪B] =
∑

x∈A∪B
f(x)

=
∑
x∈A

f(x) +
∑
x∈B

f(x) since A and B are disjoint

= Pr[A] + Pr[B] �

Corollary 5.11. For any event E, Pr[E] = 1− Pr[E].

Proof. This follows directly from Claim 5.10, E ∪E = S, and E ∩E = ∅. �

3 To see this, observe that in order for the first head to occur on the nth toss, we must
have the unique sequence of tosses that start with n− 1 tails and end with a head. On the
other hand, there are 2n equally-probable sequences of n coin tosses. This gives probability
1/2n.

4 One way to compute the sum is to observe that it is a converging geometric series.
More directly, let S = 1/2 + 1/4 + · · · , and observe that S = 2S − S = (1 + 1/2 + 1/4 +
· · ·)− (1/2 + 1/4 + · · ·) = 1.

5 This is the Basel problem, first solved by Euler.

5.2. CONDITIONAL PROBABILITY AND INDEPENDENCE 77

When events are not disjoint, we instead have the following generalization
of the inclusion-exclusion principle.

Claim 5.12. Given events A and B, Pr[A∪B] = Pr[A] + Pr[B]−Pr[A∩B].

Proof. First observe that A ∪B = (A−B) ∪ (B − A) ∪ (A ∩B) and that all
the terms on the RHS are disjoint. Therefore

Pr[A ∪B] = Pr[A−B] + Pr[B −A] + Pr[A ∩B] (5.1)

Similarly, we have

Pr[A] = Pr[A−B] + Pr[A ∩B] (5.2)
Pr[B] = Pr[B −A] + Pr[A ∩B] (5.3)

because, say A is the disjoint union of A − B and A ∩ B. Substituting (5.2)
and (5.3) into (5.1) gives

Pr[A ∪B] = Pr[A−B] + Pr[B −A] + Pr[A ∩B]
= (Pr[A]− Pr[A ∩B]) + (Pr[B]− Pr[A ∩B]) + Pr[A ∩B]
= Pr[A] + Pr[B]− Pr[A ∩B] �

We remark that given an equiprobable probability space, Claim 5.12 is
exactly equivalent to the inclusion-exclusion principle. An easy corollary of
Claim 5.12 is the union bound.

Corollary 5.13 (Union Bound). Given events A and B, Pr[A∪B] ≤ Pr[A]+
Pr[B]. In general, given events A1 . . . , An,

Pr

[⋃
i

Ai

]
≤
∑
i

Pr[Ai]

5.2 Conditional Probability and Independence

Let us continue with the interpretation that probabilities represent our beliefs
on the state of the world. How does knowing that one event has occurred affect
our beliefs on the probability of another event? E.g., if it is cloudy instead
of sunny, then it is more likely to rain. Perhaps some events are independent
and do not affect each other. E.g., we believe the result of a fair coin-toss does
not depend on the result of previous tosses. In this section we capture these
notions with the study of conditional probability and independence.

78 probability

Conditional Probability

Suppose after receiving a random 5-card hand dealt from a standard 52-card
deck, we are told that the hand contains “at least a pair” (that is, at least
two of the cards have the same rank). How do we calculate the probability
of a full-house given this extra information? Consider the following thought
process:

• Start with the original probability space of containing all 5-card hands,
pair or no pair.

• To take advantage of our new information, eliminate all hands that do
not contain a pair.

• Re-normalize the probability among the remaining hands (that contain
at least a pair).

Motivate by this line of reasoning, we define conditional probability as follows:

Definition 5.14. Let A and B be events, and let Pr[B] 6= 0. The conditional
probability of A, conditioned on B, denoted by Pr[A | B], is defined as

Pr[A | B] =
Pr[A ∩B]

Pr[B]

In the case of an equiprobable probability space, we have

Pr[A | B] = |A ∩B|/|B|

because the probability of an event is proportional to the cardinality of the
event.

Example 5.15 (Second Ace Puzzle). Suppose we have a deck of four cards:
{A♠, 2♠, A♥, 2♥}. After being dealt two random cards, facing down, the
dealer tells us that we have at least one ace in our hand. What is the
probability that our hand has both aces? That is, what is Pr[two aces |
at least one ace]?

Because we do not care about the order in which the cards were dealt, we
have an equiprobable space with 6 outcomes:

{A♠2♠, A♠A♥, A♠2♥, 2♠A♥, 2♠2♥, A♥2♥}

If we look closely, five of the outcomes contain at least one ace, while only one
outcome has both aces. Therefore Pr[two aces | at least one ace] = 1/5.

5.2. CONDITIONAL PROBABILITY AND INDEPENDENCE 79

Now what if the dealer tells us that we have the ace of spades (A♠) in our
hand? Now Pr[two aces | has ace of spades] = 1/3. It might seem strange
that the probability of two aces has gone up; why should finding out the suit
of the ace we have increase our chances? The intuition is that by finding out
the suit of our ace and knowing that the suit is spades, we can eliminate many
more hands that are not two aces.

Example 5.16 (Second-Child Problem). Let us assume that a child is equally
likely to be a boy or a girl. A friend of yours has two children but you don’t
know their sexes. Consider the following two cases. A boy walks in the door
and your friend says,

“This is my child.” (5.4)

Or, a boy walks in the door and your friend says,

“This is my older child.” (5.5)

What is the probability that both children are boys?
If we order the children by age, we again have a equiprobable probabil-

ity space6. The four outcomes are { boy-boy, boy-girl, girl-boy, girl-girl }.
Therefore,

Pr[two boys | (5.4)] = 1/3
Pr[two boys | (5.5)] = 1/2

Now suppose that we know exactly one of the children plays the cello. If
a boy walks in the door and your friend says,

“He is the one who plays the cello.”

then we are in same case as (5.5) (instead of ordering by age, we order the
children according to who plays the cello).

One more food for thought. What if we know that at least one of the
children plays the cello? Now what is the probability that both children
are boys, if a boy walks in, and start playing the cello? To calculate this
probability, first we need to enlarge the sample space; each child, in addition
to being a boy or a girl, either plays the cello or does not. Next we need to
specify a probability mass function on this space. This is where we get stuck,
since we need additional information to define the probability mass function.
E.g., what is the probability that both children plays the cello, v.s. only one
child plays the cello?

6 If we do not order the children, then our sample space could be {two boys, one boy
and one girl, two girls}, with probability 1/4, 1/2, and 1/4 respectively. This probability
space is suitable for case (5.4), but not (5.5)

80 probability

Independence

By defining conditional probability, we modeled how the occurrence of one
event can affect the probability of another event. An equally interesting con-
cept is independence, where a set of events do not affect each other.

Definition 5.17 (Independence). A sequence of events A1, . . . , An are (mutu-
ally) independent7if and only if for every subset of these events, Ai1 , . . . , Aik ,

Pr[Ai1 ∩Ai2 ∩ · · · ∩Aik] = Pr[Ai1] · Pr[Ai2] · · ·Pr[Aik]

If there are just two events, A and B, then they are independent if and
only if Pr[A∩B] = Pr[A] Pr[B]. The following claim gives justification to the
definition of independence.

Claim 5.18. If A and B are independent events and Pr[B] 6= 0, then Pr[A |
B] = Pr[A]. In other words, conditioning on B does not change the probability
of A.

Proof.

Pr[A | B] =
Pr[A ∩B]

Pr[B]
=

Pr[A] Pr[B]
Pr[B]

= Pr[A] �

The following claim should also hold according to our intuition of inde-
pendence:

Claim 5.19. If A and B are independent events, then A and B are also
independent events. In other words, if A is independent of the occurrence of
B, then it is also independent of the “non-occurrence” of B.

Proof.

Pr[A ∩B] = Pr[A]− Pr[A ∩B] Claim 5.10
= Pr[A]− Pr[A] Pr[B] by independence

= Pr[A](1− Pr[B]) = Pr[A] Pr[B] Corollary 5.11 �

7A related notion that we do not cover in this class is pair-wise independence. A sequence
of events A1, . . . , An are pair-wise independent if and only if for every pair of events in the
sequence, Ai1 , Ai2 , we have Pr[Ai1 ∩ Ai2] = Pr[Ai1] Pr[Ai2]. Pair-wise independence is
a weaker requirement than (mutual) independence, and is therefore easier to achieve in
applications.

5.2. CONDITIONAL PROBABILITY AND INDEPENDENCE 81

A common use of independence is to predict the outcome of n coin tosses,
or more generally, the outcome of n independent Bernoulli trials (for now
think of a Bernoulli trial with success probability p as a biased coin toss that
comes up “success” with probability p and “failure” with probability 1− p).

Theorem 5.20. The probability of having exactly k successes in n independent
Bernoulli trials with success probability p is C(n, k)pk(1− p)n−k.

Proof. If we denote success by S and failure by F , then our probability space
is the set of n-character strings containing the letters S and F (e.g., SFF · · ·F
denotes the out come that the first Bernoulli trial is successful, while all the
rest failed). Using our counting tools, we know that number of such strings
with exactly k occurrences of S (success) is C(n, k). Each of those strings
occur with probability pk(1− p)n−k due to independence. �

Bayes’ Rule

Suppose that we have a test against a rare disease that affects only 0.3%
of the population, and that the test is 99% effective (i.e., if a person has the
disease the test says YES with probability 0.99, and otherwise it says NO with
probability 0.99). If a random person in the populous tested positive, what is
the probability that he has the disease? The answer is not 0.99. Indeed, this
is an exercise in conditional probability: what are the chances that a random
person has the rare disease, given the occurrence of the event that he tested
positive?

We start with with some preliminaries.

Claim 5.21. Let A1, . . . , An be disjoint events with non-zero probability such
that

⋃
iAi = S (i.e., the events are exhaustive; the events partition the sample

space S). Let B be an event. Then Pr[B] =
∑n

i=1 Pr[B | Ai]Pr[Ai]

Proof. By definition Pr[B | Ai] = Pr[B∩Ai]/Pr[Ai], and so the RHS evaluates
to

n∑
i=1

Pr[B ∩Ai]

Since A1, . . . , An are disjoint it follows that the events B ∩A1, . . . , B ∩An
are also disjoint. Therefore

n∑
i=1

Pr[B ∩Ai] = Pr

[
n⋃
i=1

B ∩Ai

]
= Pr

[
B ∩

n⋃
i=1

Ai

]
= Pr [B ∩ S] = Pr[B]

�

82 probability

Theorem 5.22 (Bayes’ Rule). Let A and B be events with non-zero proba-
bility. Then:

Pr[B | A] =
Pr[A | B] Pr[B]

Pr[A]

Proof. Multiply both sides by Pr[A]. Now by definition of conditional prob,
both sides equal:

Pr[B | A] Pr[A] = Pr[A ∩B] = Pr[A | B] Pr[B] �

A remark on notation: the symbol for conditioning “|” is similar to that of
division. While Pr[A | B] is definitely not Pr[A]/Pr[B], it does have the form
“stuff/Pr[B]”. In this sense, the above two proofs are basically “multiply by
the denominator”.

Sometimes we expand the statement of Bayes’ Rule is with Claim 5.21:

Corollary 5.23 (Bayes’ Rule Expanded). Let A and B be events with non-
zero probability. Then:

Pr[B | A] =
Pr[A | B] Pr[B]

Pr[B] Pr[A | B] + Pr[B] Pr[A | B]

Proof. We apply Claim 5.21, using that B and B are disjoint and B ∪B = S.
�

We return to our original question of testing for rare diseases. Let’s con-
sider the sample space S = {(t, d) | t ∈ {0, 1}, d ∈ {0, 1}}, where t represents
the outcome of the test on a random person in the populous, and d represents
whether the same person carries the disease or not. Let D be event that a
randomly drawn person has the disease (d = 1), and T be the event that a
randomly drawn person tests positive (t = 1).

We know that Pr[D] = 0.003 (because 0.3% of the population has the dis-
ease). We also know that Pr[T | D] = 0.99 and Pr[T | D] = 0.01 (because the
test is 99% effective). Using Bayes’ rule, we can now calculate the probability
that a random person, who tested positive, actually has the disease:

Pr[D | T] =
Pr[T | D] Pr[D]

(Pr[D] Pr[T | D] + Pr[D] Pr[T | D])

=
.99 ∗ .003

.003 ∗ .99 + .997 ∗ .01
= 0.23

Notice that 23%, while significant, is a far cry from 99% (the effectiveness
of the test). This final probability can vary if we have a different prior (initial

5.2. CONDITIONAL PROBABILITY AND INDEPENDENCE 83

belief). For example, if a random patient has other medical conditions that
raises the probability of contracting the disease up to 10%, then the final
probability of having the disease, given a positive test, raises to 92%.

Conditional Independence

Bayes’ rule shows us how to update our beliefs when we receive new infor-
mation. What if we receive multiple signals at once? How do we compute
Pr[A | B1 ∩B2]? First we need the notion of conditional independence.

Definition 5.24 (Conditional Independence). A sequence of eventsB1, . . . , Bn
are conditionally independent given event A if and only if for every subset of
the sequence of events, Bi1 , . . . , Bik ,

Pr

[⋂
k

Bik | A

]
=
∏
k

Pr[Bik | A]

In other words, given that the eventA has occurred, then the eventsB1, . . . , Bn
are independent.

When there are only two events, B1 and B2, they are conditionally inde-
pendent given event A if and only if Pr[B1 ∩ B2 | A] = Pr[B1 | A] Pr[B2 | A].
The notion of conditional independence is somewhat fickle, illustrated by the
following examples:

Independence does not imply conditional independence. Suppose we
toss a fair coin twice; let H1 and H2 be the event that the first and
second coin tosses come up heads, respectively. Then H1 and H2 are
independent:

Pr[H1] Pr[H2] =
1
2
· 1

2
=

1
4

= Pr[H1 ∩H2]

However, if we are told that the at least one of the coin tosses came
up tails (call this event T), then H1 and H2 are no longer independent
given T :

Pr[H1 | T] Pr[H2 | T] =
1
3
· 1

3
6= 0 = Pr[H1 ∩H2 | T]

Conditional independence does not imply independence. Suppose we
have two coins, one is heavily biased towards heads, and the other one is
heavily biased towards tails (say with probability 0.99). First we choose

84 probability

a coin at random; let BH be the event that we choose the coin that is
biased towards heads. Next we toss the chosen coin twice; let H1 and
H2 be the event that the first and second coin tosses come up heads,
respectively. Then, given that we chose the coin biased towards heads
(the event BH), H1 and H2 are independent:

Pr[H1 | F] Pr[H2 | F] = 0.99 · 0.99 = 0.992 = Pr[H1 ∩H2 | F]

However, H1 and H2 are not independent, since if the first toss came
up heads, it is most likely that we chose the coin that is biased towards
heads, and so the second toss will come up heads as well. Actually
probabilities are:

Pr[H1] Pr[H2] =
1
2
· 1
2

=
1
4
6= Pr[H1∩H2] = 0.5(0.992)+0.5(0.012) ≈ 0.5

Independence conditioned on event A does not imply independence
conditioned on the complement event A. Consider twins. Let G1

and G2 be the event that the first and second child is a girl, respectively.
Let A be the event that the twins are fraternal (non-identical). Then
given event A, it is reasonable to assume that G1 and G2 are indepen-
dent. On the other hand, given event A (identical twins), then G1 and
G2 are most certainly dependent since identical twins must both be boys
or both be girls.

Let us return to the question of computing Pr[A | B1 ∩ B2]. If we assume
that the signals B1 and B2 are independent when conditioned on A, and also
independent when conditioned on A, then:

Pr[A | B1 ∩B2]

=
Pr[B1 ∩B2 | A] Pr[A]

Pr[A] Pr[B1 ∩B2 | A] + Pr[A] Pr[B1 ∩B2 | A]

=
Pr[B1 | A] Pr[B2 | A] Pr[A]

Pr[A] Pr[B1 | A] Pr[B2 | A] + Pr[A] Pr[B1 | A] Pr[B2 | A]

In general, given signals B1, . . . , Bn that are conditionally independent
given A and conditionally independent given A, we have

Pr

[
A |

⋂
i

Bi

]
=

Pr[A]
∏
i Pr [Bi | A]

Pr[A]
∏
i Pr [Bi | A] + Pr[A]

∏
i Pr

[
Bi | A

]

5.3. RANDOM VARIABLES 85

Application: Spam Detection

Using “training data” (e-mails classified as spam or not by hand), we can
estimate the probability that a message contains a certain string conditioned
on being spam (or not), e.g., Pr[“viagra” | spam], Pr[“viagra” | not spam].
We can also estimate the chance that a random e-mail is spam, i.e., Pr[spam]
(this is about 80% in real life, although most spam detectors are “unbiased”
and assume Pr[spam] = 50% to make calculations nicer).

By choosing a diverse set of keywords, say W1, . . . ,Wn, and assuming
that the occurrence of these keywords are conditionally independent given a
spam message or given a non-spam e-mail, we can use Bayes’ rule to estimate
the chance that an e-mail is spam based on the words it contains (we have
simplified the expression assuming Pr[spam] = Pr[not spam] = 0.5):

Pr

[
spam |

⋂
i

Wi

]
=

∏
i Pr [Wi | spam]∏

i Pr [Wi | spam] +
∏
i Pr [Wi | not spam]

5.3 Random Variables

We use events to express whether a particular class of outcomes has occurred
or not. Sometimes we want to express more: for example, after 100 fair coin
tosses, we want to study how many coin tosses were heads (instead of focusing
on just one event, say, that there were 50 coin tosses). This takes us to the
definition of random variables.

Definition 5.25. A random variable X on a probability space (S, f) is a
function from the sample space to the real numbers X : S → R.

Back to the example of 100 coin tosses, given any outcome of the experi-
ment s ∈ S, we would define X(s) to be the number of heads that occurred
in that outcome.

Definition 5.26. Given a random variable X on probability space (S, f), we
can consider a new probability space (S′, fX) where the sample space is the
range ofX, S′ = {X(s) | s ∈ S}, and the probability mass function is extended
from f , fX(x) = PrS,f [{x | X(s) = x}]. We call fX the probability distribution
or the probability density function of the random variableX. Similarly defined,
the cumulative distribution or the cumulative density function of the random
variable X is FX(x) = PrS,f [{x | X(s) ≤ x}].

Example 5.27. Suppose we toss two 6-sided dice. The sample space would
be pairs of outcomes, S = {(i, j) | i, j ∈ {1, . . . , 6}}, and the probability

86 probability

mass function is equiprobable. Consider the random variables, X1(i, j) = i,
X2(i, j) = j and X(i, j) = i+ j. These random variables denotes the outcome
of the first die, the outcome of the second die, and the some of the two die,
respectively. The probability density function of X would take values:

fX(1) = 0
fX(2) = Pr[(1, 1)] = 1/36
fX(3) = Pr[(1, 2), (2, 1)] = 2/36

...
fX(6) = Pr[(1, 5), (2, 3), . . . , (3, 1)] = 5/36
fX(7) = Pr[(1, 6)..(6, 1)] = 6/36
fX(8) = Pr[(2, 6), (3, 5), . . . , (6, 2)] = 5/36 = fX(6)

...
fX(12) = 1/36

And the cumulative density function of X would be:

FX(2) = 1/36
FX(3) = 1/36 + 2/36 = 1/12

...
FX(12) = 1

Notation Regarding Random Variables

We can describe events by applying predicates to random variables (e.g., the
event that X, the number of heads, is equal to 50). We often use a short-hand
notation (in which we treat random variables as if they are real numbers), as
demonstrated in the following examples. Let X and Y be random variables:

X = 50 is the event {s ∈ S | X(s) = 50}
Y ≤ X is the event {s ∈ S | Y (s) ≤ X(s)}

Using this notation, we may define the probability density function of a ran-
dom variable X as fX(x) = Pr[X = x], and the cumulative density function
as FX(x) = Pr[X ≤ x].

In a similar vain, we can define new random variables from existing random
variables. In Example 5.27, we can write X = X1 +X2, to mean that for any
s ∈ S, X(s) = X1(s) +X2(s) (again, the notation treats, X, X1 and X2 as if
the are real numbers).

5.4. EXPECTATATION 87

Independent Random Variables

The intuition behind independent random variables is just like that of events:
the value of one random variable should not affect the value of another inde-
pendent random variable.

Definition 5.28. A sequence of random variables X1, X2, . . . , Xn are (mu-
tually) independent if for every subset Xi1 , . . . , Xik and for any real numbers
x1, x2, . . . , xk, the events X1 = xi1 , X2 = xi2 , . . . , Xik = xk are (mutually)
independent.

In the case of two random variables X and Y , they are independent if and
only if for all real values x and y, Pr[X = x ∩X = y] = Pr[X = x] Pr[Y = y].

As mentioned before, a common use of independence is to model the out-
come of consecutive coin tosses. This time we model it as the sum of inde-
pendent random variables. Consider a biased coin that comes up heads with
probability p. Define X = 1 if the coin comes up heads and X = 0 if the coin
comes up tails; then X is called the Bernoulli random variable (with prob-
ability p). Suppose now we toss this biased coin n times, and let Y be the
random variable that denotes the total number of occurrence of heads.8 We
can view Y as a sum of independent random variables,

∑n
i=1Xi, where Xi is

a Bernoulli random variable with probability p that represents the outcome
of the ith toss. We leave it as an exercise to show that the random variables
X1, . . . , Xn are indeed independent.

5.4 Expectatation

Given a random variable defined on a probability space, what is its “average”
value? Naturally, we need to weigh things according to the probability that
the random variable takes on each value.

Definition 5.29. Given a random variable X defined over a probability space
(S, f), we define the expectation of X to be

E[X] =
∑

x∈ range of X

Pr[X = x] · x =
∑

x∈ range of X

fX(x) · x

An alternative but equivalent definition is

E[X] =
∑
s∈S

f(s)X(s)

8 Just for fun, we can calculate the density function and cumulative density function of
Y . By Theorem 5.20, fY (k) = C(n, k)pk(1− p)n−k, and FY (k) =

Pk
i=0 C(n, i)pi(1− p)n−i.

88 probability

These definitions are equivalent because:∑
x∈ range of X

Pr[X = x] · x

=
∑

x∈ range of X

∑
s∈(X=x)

f(s) · x
Expanding Pr[X = x], and recall
that X = x is the set {s | X(s) =
x}

=
∑

x∈ range of X

∑
s∈(X=x)

f(s) ·X(s) Replacing x with X(s)

=
∑
s∈S

f(s)X(s)
the events X = x partitions S
when x ranges over the range of
X

The following simple fact can be shown with a similar argument:

Claim 5.30. Given a random variable X and a function g : R→ R,

E[g(X)] =
∑

x∈ range of X

Pr[X = x]g(x)

Proof. ∑
x∈ range of X

Pr[X = x]g(x)

=
∑

x∈ range of X

∑
s∈(X=x)

f(s)g(x)

=
∑

x∈ range of X

∑
s∈(X=x)

f(s)g(X(s))

=
∑
s∈S

f(s)g(X(s)) = E[g(X)] �

Example 5.31. Suppose in a game, with probability 1/10 we are paid $10,
and with probability 9/10 we are paid $2. What is our expected payment?
The answer is

1
10

$10 +
9
10

$2 = $2.80

Example 5.32. Given a biased coin that ends up heads with probability p,
how many tosses does it take for the coin to show heads, in expectation?

We may consider the state space S = {H,TH, TTH, TTTH, . . . }; these
are possible results of a sequence of coin tosses that ends when we see the first

5.4. EXPECTATATION 89

head. Because each coin toss is independent, we define the probability mass
function to be

f(T iH) = f(i tails followed by a head) = (1− p)ip

We leave it as an exercise to show that f is a valid probabilistic mass function.9

Let X be the random variable that denote the number of coin tosses needed
for heads to show up. Then X(T iH) = i+ 1. The expectation of X is then

E[X] =
∞∑
i=0

(i+ 1)p(1− p)i

= p
∞∑
i=0

(i+ 1)(1− p)i = p
1
p2

=
1
p

where we used the fact that
∑∞

i=0(i+ 1)xi = 1/(1− x)2 whenever |x| < 1.10

Application to Game Theory

In game theory, we assign a real number, called the utility, to each outcome
in the sample space of a probabilistic game. We then assume that rational
players make decisions that maximize their expected utility. For example,
should we pay $2 to participate in the game in Example 5.31? If we assume
that our utility is exactly the amount of money that we earn, then

with probability 1/10 we get paid $10 and gets utility 8
with probability 9/10 we get paid $2 and gets utility 0

This gives a positive expected utility of 0.8, so we should play the game!
This reasoning of utility does not always explain human behavior though.

Suppose there is a game that cost a thousand dollars to play. With one
chance in a million, the reward is two billion dollars (!), but otherwise there
is no reward. The expected utility is

1
106

(2× 109 − 1000) + (1− 1
106

)(0− 1000) = 1000

One expects to earn a thousand dollars from the game on average. Would
you play it? Turns out many people are risk-averse and would turn down

9 Recall that an infinite geometric series with ratio |x| < 1 converges to
P∞

i=0 xi =
1/(1− x).

10 To see this, let S =
P∞

i=0(i + 1)xi, and observe that if |x| < 1, then S(1 − x) is a
converging geometric series: S(1−x) = S−xS = (x0 + 2x1 + 3x2 + · · ·)− (x1 + 2x2 + · · ·) =
(x0 + x1 + · · ·) = 1/(1− x).

90 probability

the game. After all, except with one chance in a million, you simply lose
a thousand dollars. This example shows how expectation does not capture
all the important features of a random variable, such as how likely does the
random variable end up close to its expectation (in this case, the utility is
either -1000 or two billion, not close to the expectation of 1000 at all).

In other instances, people are risk-seeking. Take yet another game that
takes a dollar to play. This time, with one chance in a billion, the reward is a
million dollars; otherwise there is no reward. The expected utility is

1
109

(106 − 1) + (1− 1
109

)(0− 1) = −0.999

Essentially, to play the game is to throw a dollar away. Would you play the
game? Turns out many people do; this is called a lottery. Many people think
losing a dollar will not change their life at all, but the chance of winning a
million dollars is worth it, even if the chance is tiny. One way to explain this
behavior within the utility framework is to say that perhaps earning or losing
just a dollar is not worth 1 point in utility.

Linearity of Expectation

One nice property of expectation is that the expectation of the sum of random
variables, is the sum of expectations. This can often simplify the calculation
of expectation (or in applications, the estimation of expectation). More gen-
erally,

Theorem 5.33. Let X1, . . . , Xn be random variables, and a1, . . . , an be real
constants. Then

E

[
n∑
i=1

aiXi

]
=

n∑
i=1

ai E[Xi]

5.4. EXPECTATATION 91

Proof.

E

[
n∑
i=1

aiXi

]
=
∑
s∈S

f(s)
n∑
i=1

aiXi(s)

=
∑
s∈S

n∑
i=1

aif(s)Xi(s)

=
n∑
i=1

ai
∑
s∈S

f(s)Xi(s)

=
n∑
i=1

ai E[Xi] �

Example 5.34. If we make n tosses of a biased coin that ends up heads with
probability p, what is the expected number of heads? Let Xi = 1 if the ith

toss is heads, and Xi = 0 otherwise. Then Xi is an independent Bernoulli
random variable with probability p, and has expectation

E[Xi] = p · 1 + (1− p) · 0 = p

The expected number of heads is then

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] = np

Thus if the coin was fair, we would expect (1/2)n, half of the tosses, to be
heads.

Markov’s Inequality

The expecting of a non-negative random variable X gives us a (relatively
weak) bound on the probability of X growing too large:

Theorem 5.35 (Markov’s Inequality). If X is a non-negative random variable

(i.e., X ≥ 0) and a > 0, then Pr[X ≥ a] ≤ E[X]
a

.

Proof. The expectation of X is the weighted sum of the possible values of
X, where the weights are the probabilities. Consider the random variable Y
defined by

Y =

{
a if X ≥ a
0 if a > X ≥ 0

92 probability

Clearly Y ≤ X at all times and so E[Y] ≤ E[X] (easy to verify by the definition
of expectation). Now observe that

E[X] ≥ E[Y] = a · Pr[Y = a] + 0 · Pr[Y = 0] = a · Pr[X ≥ a]

Rearranging the terms gives us Markov’s inequality. �

Example 5.36. Let X be a non-negative random variable (denoting height,
variable pricing, or the number of people in the park, for example), and sup-
pose we know the its expectation E[X]. Then most people are comfortable
with the assumption that X would not exceed one thousand times its expec-
tation, because

Pr[X ≥ 1000 E[X]] ≤ E[X]
1000 E[X]

=
1

1000

5.5 Variance

Consider the following two random variables:

1. X always take the constant value 1.
2. Y = 0 with probability 1− 10−6, and Y = 106 with probability 10−6.

Both X and Y has expectation 1, but they have very different distributions.
To capture their differences, the variance of a random variable is introduced
to capture how “spread out” is the random variable away from its expectation.

Definition 5.37. The variance of a random variable X is defined as

Var[X] = E[(X E[X])2]

Intuitively, the term (X − E[X])2 measures the distance of X to its ex-
pectation. The term is squared to ensure that the distance is always positive
(perhaps we could use absolute value, but it turns out defining variance with
a square gives it much nicer properties).

Example 5.38. Going back to the start of the section, the random variable
X (that takes the constant value 1) has E[X] = 1 and Var[X] = 0 (it is never
different from its mean). The random variable

Y =

{
0 w.p. 1− 10−6

106 w.p. 10−6

also has expectation E[Y] = 1, but variance

Var[Y] = E[(Y − E[Y])2] = (1− 10−6) · (0− 1)2 + (10−6)(106 − 1)2 ≈ 106

5.5. VARIANCE 93

Example 5.39. Let X be Bernoulli random variable with probability p. Then

Var[X] = E[(X − E[X])2] = E[(X − p)2]

= p(1− p)2 + (1− p)(−p)2 = (1− p)p(1− p+ p) = (1− p)p
Sometimes it is easier to calculate the variance using the following formula

Theorem 5.40. Let X be a random variable. Then

Var[X] = E[X2]− E[X]2

Proof.

Var[X] = E[(X − E[X])2]

= E[X2 − (2 E[X])X + E[X]2]

= E[X2]− (2 E[X]) E[X] + E[X]2 by linearity of expectation

= E[X2]− E[X]2 �

Example 5.41. Let X be Bernoulli random variable with probability p, and
let us calculate its variance with the new formula:

Var[X] = E[X2]− E[X]2

= p(1)2 + (1− p)(0)2 − p2 = p− p2 = p(1− p)

Chebyshev’s Inequality

Knowing the variance of a random variable X allows us to bound the proba-
bility of X deviating from its mean.

Theorem 5.42 (Chebyshev’s Inequality). Let X be a random variable. Then

Pr [|X − E[X]| ≥ k] ≤ Var[X]
k2

Proof. Let Y = |X − E[X]|. Applying Markov’s Inequality to Y 2, we have

Pr [|X − E[X]| ≥ k] = Pr[Y ≥ k] = Pr[Y 2 ≥ k2] because Y ≥ 0

≤ E[Y 2]
k2

=
E[(X − E[X])2]

k2
=

Var[X]
k2

�

Example 5.43. The variance (more specifically the square root of the vari-
ance) can be used as a “ruler” to measure how much a random variable X
may deviate from its mean. By convention, let Var[X] = σ2. Then

Pr[|X − E[X]| ≥ nσ] ≤ Var[X]
n2σ2

=
1
n2

Chapter 6

Logic

“Logic will get you from A to B. Imagination will take you everywhere.”
– Albert Einstein

Logic is a formal study of mathematics; it is the study of mathematic
reasoning and proofs itself. In this chapter we cover two most basic forms
of logic. In propositional logic, we consider basic conjunctives such as AND,
OR, and NOT. In first-order logic, we additionally include tools to reason,
for example, about “for all prime numbers” or “for some bijective function”.
There are many more logical systems studied by mathematicians that we do
not cover (e.g., modal logic for reasoning about knowledge, or temporal logic
for reasoning about time).

6.1 Propositional Logic

A formula in propositional logic consists of atoms and connectives. An atom
is a primitive proposition, such as “it is raining in Ithaca”, or “I open my
umbrella”; we usually denote that atoms by capital letters (P , Q, R). The
atoms are then connected by connectives, such as AND (∧), OR (∨), NOT
(¬), implication (→), iff (↔). An example of a formula is

(P ∧Q)→ R

If P is the atom “it is raining in Ithaca”, Q is the atom “I have an umbrella”,
and R is the atom “I open my umbrella”, then the formula reads as:

If it is raining in Ithaca and I have an umbrella, then I open my umbrella.

Formally, we define formulas recursively:

95

96 logic

• Every atom is a formula.

• If ϕ and ψ are formulas, then

¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ

are all valid formulas.

What does P ∨Q∧R mean? Just like in arithmetic where multiplication has
precedence over addition, here the order of precedence is: NOT (¬), AND (∧),
OR (∨), implication (→), equivalence (↔). The preferred way to disambiguate
a formula, or course, is to use parenthesis (e.g., it is more clear and equivalent
to write P ∨ (Q ∧R)).

Semantics of Propositional Logic

Here is how we interpret propositional logic. An atom can either be true (T
or 1) or false (F or 0). This is specified by a truth assignment or, in logic
jargon, an interpretation (e.g., an interpretation would specify whether today
is really raining, or whether I have opened my umbrella). The connectives are
functions from truth value(s) to a truth value; these functions are defined to
reflect the meaning of the connectives’ English names. The formal definition
of these functions can be seen in a truth table in Figure 6.1.

ϕ ψ ¬ϕ ϕ ∧ ψ ϕ ∨ ψ ϕ→ ψ ϕ↔ ψ

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Figure 6.1: The truth table definition of the connectives NOT (¬), AND (∧),
OR (∨), implication (→), and equivalence (↔).

Most of the definitions are straightforward. NOT flips a truth value; AND
outputs true iff both inputs are true, OR outputs true iff at least one of the
inputs are true; equivalence outputs true iff both inputs have the same truth
value. Implication (→) may seem strange at first. ϕ→ ψ is false only if ϕ is
true, yet ψ is false. In particular, ϕ→ ψ is true whenever ϕ is false, regardless
of what ψ is. An example of this in English might be “if pigs fly, then I am the

6.1. PROPOSITIONAL LOGIC 97

president of the United States”; this seems like a correct statement regardless
of who says it since pigs don’t fly in our world.1

Finally, we denote the truth value of a formula ϕ, evaluated on an inter-
pretation I, by ϕ[I]. We define ϕ[I] inductively:

• If ϕ is an atom P , then ϕ[I] is the truth value assigned to P in the
interpretation I.

• If ϕ = ¬ρ, then ϕ[I] = ¬ρ[I] (using Table 6.1).

• If ϕ = ρ1 ∧ ρ2, then ϕ[I] = ρ1[I] ∧ ρ2[I] (using Table 6.1). The value of
ϕ[I] is similarly defined if ϕ = ρ1 ∨ ρ2, ρ1 → ρ2 or ρ1 ↔ ρ2.

Given a formula ϕ, we call the mapping from interpretations to the truth value
of ϕ (i.e., the mapping that takes I to ϕ[I]) the truth table of ϕ.

At this point, for convenience, we add the symbols T and F as special atoms
that are always true or false, respectively. This does not add anything real
substance to propositional logic since we can always replace T by “P ∨ ¬P”
(which always evaluates to true), and F by “P ∧¬P” (which always evaluates
to false).

Equivalence of Formulas

We say that two formulas ϕ and ψ are equivalent (denoted ϕ ≡ ψ) if for all
interpretations I, they evaluate to the same truth value (equivalently, if ϕ and
ψ have the same truth table). How many possible truth tables are there over n
atoms? Because each atom is either true or false, we have 2n interpretations. A
formula can evaluate to true or false on each of the interpretations, resulting in
22n

possible truth tables (essentially we are counting the number of functions
of the form {0, 1}n → {0, 1}).

With such a large count of distinct (not equivalent) formulas, we may
wonder is our propositional language rich enough to capture all of them? The
answer is yes. The following example can be extended to show how AND, OR
and NOT (∧, ∨ and ¬) can be used to capture any truth table. Suppose we

1 A related notion, counterfactuals, is not captured by propositional implication. In the
sentence “if pigs were to fly then they would have wings”, the speaker knows that pigs do not
fly, but wish to make a logical conclusion in an imaginary world where pigs do. Formalizing
counterfactuals is still a topic of research in logic.

98 logic

want to capture the truth table for implication:

P Q ϕ (= P → Q)
T T T
T F F
F T T
F F T

We find the rows where ϕ is true; for each such row we create an AND formula
that is true iff P and Q takes on the value of that row, and then we OR these
formulas together. That is:

(P ∧Q)︸ ︷︷ ︸
first row

∨ (¬P ∧Q)︸ ︷︷ ︸
third row

∨ (¬P ∧ ¬Q)︸ ︷︷ ︸
fourth row

This can be simplified to the equivalent formula:

(P ∧Q) ∨ (¬P ∧Q) ∨ (¬P ∧ ¬Q) ≡ (P ∧Q) ∨ ¬P ≡ ¬P ∨Q

The equivalence
P → Q ≡ ¬P ∨Q (6.1)

is a very useful way to think about implication (and a very useful formula for
manipulating logic expressions).

Finally, we remark that we do not need both OR and AND (∨ and ∧) to
capture all truth tables. This follows from De Morgan’s Laws:

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

(6.2)

Coupled with the (simple) equivalence ¬¬ϕ ≡ ϕ, we can eliminate AND (∧),
for example, using

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

Satisfiability and Validity

Intuitively, a formula is satisfiable if it can be made true.

Definition 6.1 (Satisfiability). We say that a truth assignment I satisfies a
formula ϕ if ϕ[I] = T; we write this as I |= ϕ. A formula ϕ is satisfiable if
there exists a truth assignment I such that I |= ϕ; otherwise ϕ is unsatisfiable.

Even better, a formula is valid if it is always true.

6.1. PROPOSITIONAL LOGIC 99

Definition 6.2 (Validity). A formula ϕ is valid (or a tautology) if for all a
truth assignments I, I |= ϕ.

Example 6.3. • P ∧Q is satisfiable.

• P ∧ ¬P is unsatisfiable.

• P ∨ ¬P is valid.

• For a more complicated example, the following formula is valid.

(P → Q) ∨ (Q→ P)

To see why, note that it is equivalent to

(¬P ∨Q) ∨ (¬Q ∨ P)

by (6.1), and clearly either ¬P or P is true.

How do we check if a formula ϕ is valid, satisfiable or unsatisfiable? A
simple way is to go over all possible truth assignments I and evaluate ϕ[I].
Are there more efficient algorithms?

It turns out that simply finding out whether an efficient algorithm exists
for satisfiability is a famous open problem2 (with a prize money of a million
dollars set by the Clay Mathematics Institute). The good news is that once
a satisfying assignment I is found for ϕ, everyone can check efficiently that
ϕ[I] = T. Unsatisfiability, on the other hand, does not have this property:
even after taking the time to verify that ϕ[I] = F for all possible truth as-
signments I, it appears hard to convince anyone else of this fact (e.g., how do
you convince someone that you do not have a brother?).3 Finally, checking
whether a formula is valid is as hard as checking unsatisfiability.

Claim 6.4. A formula ϕ is valid if and only if ¬ϕ is unsatisfiable.

Proof. The claim essentially follows from definition. If ϕ is valid, then ϕ[I] =
T for every interpretation I. This means (¬ϕ)[I] = F for every interpretation
I, and so ¬ϕ is unsatisfiable. The other direction follows similarly. �

2In complexity jargon, checking if a formula is satisfiable is “NP-complete”, and finding
an efficient algorithm to determine satisfiability would show that P=NP.

3 In complexity jargon, the unsatisfiability problem is co-NP complete. The major open
problem here is whether or not NP=coNP; that is, whether there exists an efficient way of
convincing someone that a formula is unsatisfiable.

100 logic

6.2 Logical Inference

Now that we have established the language and semantics (meaning) of propo-
sitional logic, let us now reason with it. Suppose we know two facts. First,

“Bob carries an umbrella if it is cloudy and the forecast calls for rain.”

Next we know that

“It is not cloudy.”

Can we conclude that Bob is not carrying an umbrella? The answer is no.
Bob may always carry an umbrella around to feel secure (say in Ithaca).

To make sure that we make correct logical deductions in more complex
settings, let us cast the example in the language of propositional logic. Let P
be the atom “it is cloudy”, Q be the atom “the forecast calls for rain”, and R
be the atom “Bob carries an umbrella”. Then we are given two premises:

(P ∧Q)→ R, ¬P

Can we make the conclusion that ¬R is true? The answer is no, because the
truth assignment P = Q = F, R = T satisfies the premises, but does not satisfy
the conclusion.4 The next definition formalizes proper logical deductions.

Definition 6.5. A set of formulas {ψ1, . . . , ψn} entails a formula ψ, de-
noted by ψ1, . . . , ψn |= ψ, if for every truth assignment I that satisfies all of
ψ1, . . . , ψn, I satisfies ψ.

When {ψ1, . . . , ψn} entails ψ, we consider ψ as a logical consequence of
{ψ1, . . . , ψn}.

Theorem 6.6. ψ1, . . . , ψn entails ψ if and only if (ψ1∧· · ·∧ψn)→ ψ is valid.

Proof. Only if direction. Suppose ψ1, . . . , ψn entails ψ. To show that ϕ =
(ψ1 ∧ · · · ∧ψn)→ ψ is valid, we need to show that for every truth assignment
I, ϕ[I] = T. Consider any truth assignment I; we have two cases:

• (ψ1 ∧ · · · ∧ ψn)[I] = F. In this case ϕ[I] = T by definition of implication
(→).

• (ψ1 ∧ · · · ∧ ψn)[I] = T. Because ψ1, . . . , ψn entails ψ, we also have
ψ[I] = T. This in turn makes ϕ[I] = T.

4If we change the first premise to (P ∧ Q) ↔ R, i.e., “Bob carries an umbrella if and
only if it is cloudy and the forecast calls for rain”, then ¬R is a valid conclusion.

6.2. LOGICAL INFERENCE 101

If direction. Suppose ϕ = (ψ1 ∧ · · · ∧ ψn) → ψ is valid. For any truth
assignment I that satisfies all of ψ1, . . . , ψn, we have (ψ1 ∧ · · · ∧ ψn)[I] = T.
We also have ϕ[I] = ((ψ1 ∧ · · · ∧ ψn) → ψ)[I] = T due to validity. Together
this means ψ[I] must be true, by observing the truth table for implication
(→). This shows that ψ1, . . . , ψn entails ψ. �

Theorem 6.6 gives us further evidence that we have defined implication
(→) correctly. We allow arguments to be valid even if the premise are false.

Axiom Systems

Checking the validity of a formula is difficult (as we discussed, it has been a
long standing open question). On the other hand, we perform logic reasoning
everyday, in mathematical proofs and in English. An axiom system formalizes
the reasoning tools we use in a syntactic way (i.e., pattern matching and string
manipulations of formulas) so that we may study and eventually automate the
reasoning process.

Definition 6.7. An axiom system H consists of a set of formulas, called
the axioms, and a set of rules of inference. A rule of inference is a way of
producing a new formula (think of it as new logical conclusions), given several
established formulas (think of it as known facts). A rule of inference has the
form:

ϕ1

ϕ2
...
ϕn
ψ

This means “from the formulas ϕ1, . . . , ϕn we may infer ψ”. We
also use the notation ϕ1, . . . ϕn ` ψ (note that this is different
from the symbol for satisfiability |=).

When we define an axiom system, think of the axioms as as an initial set of
tautologies (preferably a small set) that describes our world (e.g., Euclidean
geometry has the axiom that two distinct points defines a unique straight
line). We can then pattern match the axioms against the rules of inference to
derive new tautologies (logical consequences) from the initial set:

Definition 6.8. A proof or a derivation in an axiom system H is a sequence
of formulas χ1, χ2, . . . , χn where each formula χk either matches5an axiom in
H, or follows from previous formulas via an inference rule from H, i.e., there
exists an inference rule ϕ1, . . . , ϕm ` ψ such that χk matches ψ, and there
exists j1, . . . , jm ∈ {1, . . . , k − 1} such that χji matches ϕi, correspondingly.

102 logic

Definition 6.9. We say a formula χ can be inferred from an axiom system H,
denoted by `H χ, if there exists a derivation in H that ends with the formula
χ (when understood, we leave out the subscript for convenience).

Similarly, we say a set of formulas ϕ1, . . . , ϕn infers χ (under axiom system
H), denoted by ϕ1, . . . , ϕn ` χ, if there exists a derivation in H that ends in
χ, when ϕ1, . . . , ϕn are treated as addition axioms.

It is very important to understand that a-priori, derivation and inference
has nothing to do with truth and validity. If we start with false axioms or
illogical rules of inference, we may end up deriving an invalid formula. On the
other hand, if we start with an incomplete set of axioms, or if we miss a few
rules of inference, we may not be able to derive some valid formulas. What
we want is an axiom system that is both complete and sound :

Completeness: An axiom system is complete if all valid statements can be
derived.

Soundness: An axiom system is sound if only valid statements can be de-
rived.

For example, an axiom system that contains an invalid axiom is not sound,
while a trivial axiom system that contains no axioms or no rules of inference
is trivially incomplete.

Rules of inference. Here are well-known (and sound) rules of inference for
propositional logic:

Modus Ponens: Modus Tollens:
ϕ→ ψ
ϕ

ψ

ϕ→ ψ
¬ψ
¬ϕ

Hypothetical Syllogism: Disjunctive Syllogism:
ϕ→ ψ
ψ → χ

ϕ→ χ

ϕ ∨ ψ
¬ϕ
ψ

It is easy to see that all of the above inferences rules preserves validity, i.e.,
the antecedents (premises) entail the conclusion. Therefore an axiom system
using these rules will at least be sound.

5We have left out the (rather tedious) formal definitions of “matching” against axioms
or inference rules. This is best explained through examples later in the section.

6.2. LOGICAL INFERENCE 103

Example 6.10. The following derivation shows that ¬C,¬C → (A → C) `
¬A.

¬C an axiom
¬C → (A→ C) an axiom
A→ C Modus Ponens, from line 1 and 2
¬A Modus Tollens, from line 3 and 1

In our application of Modus Ponens, we have “matched” ¬C with ϕ and
(A→ C) with ψ.

Example 6.11. The following derivation shows that A ∨ B, ¬B ∨ (C ∧
¬C),¬A ` C ∧ ¬C. Note that the conclusion is non-sense (can never be
true); this is because we have started with a “bad” set of axioms.

A ∨B an axiom
¬A an axiom
B Disjunctive Syllogism, from line 1 and 2

¬B ∨ (C ∧ ¬C) an axiom
C ∧ ¬C Disjunctive Syllogism, from line 3 and 4

Axioms. An example axiom may look like this:

ϕ→ (ψ → ϕ)

By this we mean any formula that “matches” against the axiom is assumed
to be true. For example, let P and Q be atoms, then

P → (Q→ P)

(P → Q)→ ((Q→ P)→ (P → Q))

are both assumed to be true (in the second example, we substitute ϕ = P → Q,
ψ = Q → P). To have a sound axiom system, we much start with axioms
that are valid (tautologies); it is not hard to see that the example axiom is
indeed valid.

A sound and complete axiomatization. We now present a sound and
complete axiom system for propositional logic. We limit the connectives in
the language to only implication (→) and negation (¬); all other connectives

104 logic

that we have introduced can be re-written using only→ and ¬ (e.g., P ∨Q ≡
¬P → Q, P ∧Q ≡ ¬(P → ¬Q)).

Consider the axioms

ϕ→ (ψ → ϕ) (A1)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (A2)
(¬ϕ→ ¬ψ)→ (ψ → ϕ) (A3)

Theorem 6.12. The axioms (A1), (A2) and (A3), together with the inference
rule Modus Ponens, form a sound and complete axiom system for propositional
logic (restricted to connectives → and ¬).

The proof of Theorem 6.12 is out of the scope of this course (although keep
in mind that soundness follows from the fact that our axioms are tautologies
and Modus Ponens preserves validity). We remark that the derivations guar-
anteed by Theorem 6.12 (for valid formulas) are by and large so long and
tedious that they are more suited to be generated and checked by computers.

Natural deduction. Natural deduction is another logical proof system that
generates proofs that appears closer to “natural” mathematical reasoning.
This is done by having a large set of inference rules to encompass all kinds of
reasoning steps that are seem in everyday mathematical proofs. We do not
formally define natural deduction here; instead, we simply list some example
rules of inference to present a taste of natural deduction. Note that these are
all valid inference rules and can be incorporated into axiom systems as well.

Constructive Dilemma: Resolution: Conjunction:

ϕ1 → ψ1

ϕ2 → ψ2

ϕ1 ∨ ϕ2

ψ1 ∨ ψ2

ϕ ∨ ψ
¬ϕ ∨ χ
ψ ∨ χ

ϕ
ψ

ϕ ∧ ψ

Simplification: Addition:

ϕ ∧ ψ
ϕ

ϕ

ϕ ∨ ψ

Most of the time we also add rules of “replacement” which allow us to rewrite
formulas into equivalent (and simpler) forms, e.g.,

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ De Morgan’s Law
¬¬ϕ ≡ ϕ Double negation

6.3. FIRST ORDER LOGIC 105

6.3 First Order Logic

First order logic is an extension of propositional logic. First order logic op-
erates over a set of objects (e.g., real numbers, people, etc.). It allows us to
express properties of individual objects, to define relationships between ob-
jects, and, most important of all, to quantify over the entire set of objects.
Below is a classic argument in first order logic:

All men are mortal
Socrates is a man
Therefore Socrates is a mortal

In first order logic, the argument might be translated as follows:

∀xMan(x)→ Mortal(x)
Man(Socrates)
Mortal(Socrates)

Several syntax features of first order logic can be seen above: ∀ is one of the
two quantifiers introduced in first order logic; x is a variable; Socrates is a
constant (a particular person); Mortal(x) and Man(x) are predicates.

Formally, an atomic expression is a predicate symbol (e.g., Man(x),
LessThan(x, y)) with the appropriate number of arguments; the arguments
can either be constants (e.g., the number 0, Socrates) or variables (e.g., x,
y and z). A first order formula, similar to propositional logic, is multiple
atomic expressions connected by connectives. The formal recursive definition
goes as follows:

• Every atomic expression is a formula.

• If ϕ and ψ are formulas, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ and ϕ↔ ψ are
also formulas.

• [New to first order logic.] If ϕ is a formula and x is a variable, then ∀xϕ
(for all x the formula ϕ holds) and ∃xϕ (for some x the formula ϕ holds)
are also formulas.

Example 6.13. The following formula says that the binary predicate P is
transitive:

∀x∀y∀z(P (x, y) ∧ P (y, z))→ P (x, z)

106 logic

Example 6.14. The following formula shows that the constant “1” is a mul-
tiplicative identity (the ternary predicate Mult(x, y, z) is defined to be true if
xy = z):

∀x∀y(Mult(1, x, x) ∧Mult(x, 1, x))

Can you extend the formula to enforce that “1” is the unique multiplicative
identity?

Example 6.15. The following formula shows that every number except 0 has
a multiplicative inverse:

∀x∃y(¬Equals(x, 0)→ Mult(x, y, 1))

Semantics of First Order Logic

We have already described the intuitive meaning of first order logic formulas
in English, but let us now give it a formal treatment. Just as in propositional
logic, we need an interpretation I to assign values to constants, predicates,
etc. Additionally, we need a domain D that specifies the universe of objects,
in order for quantifiers to make sense.

First we define the notion of a sentence; these are formulas without “dan-
gling” variables.

Definition 6.16. An occurrence of variable x in a formula ϕ is bound if there
is some quantifier that operates on x (that is it occurs in some sub-formula ψ
the is preceded by ∀x or ∃x); otherwise the variable x is free. A sentence is
a formula with no free variables.

Example 6.17. In the following formula (that is not a sentence), the first
occurrence of x is free, and the second one is bound:

∀yP (x, y)→ ∃xR(x)

The next formula is a sentence (note that in this case, ∃x captures both
occurrences of x):

∀y∃x(P (x, y)→ R(x))

From now on we restrict ourselves to sentences, and define their truth
values. Recall that in propositional logic, we needed a truth assignment for
each propositional atom. In first order logic, we need:

• A domain D (simply a set of elements that we are concerned with).

• An interpretation I = ID for domain D that

6.3. FIRST ORDER LOGIC 107

– for each constant c, the interpretation assigns an element in the
domain c[I] ∈ D.

– for each predicate P (x1, . . . , xn), the interpretation assigns a func-
tion P [I] : Dn → {T,F} (equivalently, the interpretation assigns an
n-ary relation that contains all n-tuples that evaluates to true).

For example, in the Socrates example, we could have D be the set of all people
(or the set of all living creatures, or the set of all Greeks). An interpretation
I would need to single out Socrates in D, and also specify for each a ∈ D,
whether Man(x) and Mortal(x) holds.

Given a first-order sentence ϕ, a domain D and an interpretation I = ID
(together (D, I) is called a model), we can define the truth value of ϕ, denoted
by ϕ[I], recursively:

• If ϕ is a atomic expression (i.e., a predicate), then because ϕ is a sen-
tence, it is of the form P (c1, . . . , cn) where ci are constants. The value
of ϕ[I] is P [I](c1[I], . . . , cn[I]).

• If ϕ has the form ¬ψ, ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1 → ψ2 or ψ1 ↔ ψ2, then
ϕ[I] = ¬ψ[I], ψ1[I]∧ψ2[I], ψ1[I]∨ψ2[I], ψ1[I]→ ψ2[I] or ψ1[I]↔ ψ2[I],
respectively (following the truth tables for ¬, ∧, ∨, →, and ↔).

• If ϕ has the form ∀xψ, then ϕ[I] is true if and only if for every element
a ∈ D, ψ, with free occurrences of x replaced by a, evaluates to true.

• If ϕ has the form ∃xψ, then ϕ[I] is true if and only if there exists some
element a ∈ D such that ψ, with free occurrences of x replaced by a,
evaluates to true.

For instance, if the domain D is the natural numbers N, then

∀xP (x) ≡ P (0) ∧ P (1) ∧ . . .
∃xP (x) ≡ P (0) ∨ P (1) ∨ . . .

A note on the truth value of first order formulas [optional]. We
have cheated in our definition above, in the case that ϕ = ∀xψ or ∃xψ. When
we replace free occurrences of x in ψ by a, we no longer have a formula (be-
cause strictly speaking, “a”, an element, is not part of the language). One
work around is to extend the language with constants for each element in the
domain (this has to be done after the domain D is fixed). A more common
approach (but slightly more complicated) is to define truth values for all for-
mulas, including those that are not sentences. In this case, the interpretation

108 logic

also needs to assign an element a ∈ D to each (free) variable x occurring in
ϕ; this is out of the scope of this course.

Satisfiability and Validity

We define satisfiability and validity of first order sentences similar to the way
they are defined for propositional logic.

Definition 6.18. Given a domain D and an interpretation I over D, we say
(I,D) satisfies a formula ϕ if ϕ[I] = T; in this case we write D, I |= ϕ. A
formula is ϕ is satisfiable if there exists D and I such that D, I |= ϕ, and is
unsatisfiable otherwise. A formula is ϕ is valid (of a tautology) if for every
D and I, D, I |= ϕ,

Logical Reasoning and Axiom Systems

We can defined entailment in the same way it was defined for propositional
logic. Just as for propositional logic we can find a complete and sound axiom-
atization for first-order logic, but the axiom system is much more complex to
describe and is out of the scope of this course.

6.4 Applications

Logic has a wide range of applications in computer science, including program
verification for correctness, process verification for security policies, informa-
tion access control, formal proofs of cryptographic protocols, etc.

In a typical application, we start by specifying of “model”, a desired prop-
erty in logic, e.g., we want to check that a piece of code does not create
deadlocks. We next describe the “system” in logic, e.g., the piece of code,
and the logic behind code execution. It then remains to show that our system
satisfies our desired model, using tools in logic; this process is called model
checking. Recently Edmund Clark received the Turing award in 2007 for his
work on hardware verification using model checking. He graduate with his
Ph.D. from Cornell in 1976 with Bob Constable as advisor.

Chapter 7

Graphs

“One graph is worth a thousand logs.”
– Michal Aharon, Gilad Barash, Ira Cohen and Eli Mordechai.

Graphs are simple but extremely useful mathematical objects; they are
ubiquitous in practical applications of computer science. For example:

• In a computer network, we can model how the computers are connected
to each other as a graph. The nodes are the individual computers and
the edges are the network connections. This graph can then be used, for
example, to route messages as quickly as possible.

• In a digitalized map, nodes are intersections (or cities), and edges are
roads (or highways). We may have directed edges to capture one-way
streets, and weighted edges to capture distance. This graph is then used
for generation directions (e.g., in GPS units).

• On the internet, nodes are web pages, and (directed) edges are links from
one web page to another. This graph can be used to rank the importance
of each web page for search results (e.g., the importance of a web page
can be determined by how many other web pages are pointing to it, and
recursively how important those web pages are).

• In a social network, nodes are people, and edges are friendships. Under-
standing social networks is a very hot topic of research. For example,
how does a network achieve “six-degrees of separation”, where everyone
is approximately 6 friendships away from anyway else? Also known as
the small world phenomena, Watts and Strogatz (from Cornell) pub-
lished the first models of social graphs that have this property, in 1998.

109

110 graphs

In Milgram’s small world experiment, random people in Omaha, Ne-
braska were tasked to route a letter to “Mr. Jacobs” in Boston, Mas-
sachusetts by passing the letter only to someone they know on a first-
name basis. The average number of times that a letter switched hands
before reaching Mr. Jacobs was approximately 6! This meant that not
only are people well connected, they can route messages efficiently given
only the information of their friends (i.e., knowledge only of a small,
local part of the graph). Jon Kleinberg (also from Cornell) gave the
first models for social graphs that allow such efficient, local routing al-
gorithms.

Definition 7.1. A directed graph G is a pair (V,E) where V is a set of
vertices (or nodes), and E ⊆ V × V is a set of edges. An undirected graph
additionally has the property that (u, v) ∈ E if and only if (v, u) ∈ E.

In directed graphs, edge (u, v) (starting from node u, ending at node v) is
different from edge (v, u). We also allow “self-loops”, i.e., edges of the form
(v, v) (say, a web page may link to itself). In undirected graphs, because edge
(u, v) and (v, u) must both be present or missing, we often treat a non-self-loop
edge as an unordered set of two nodes (e.g., {u, v}).

A common extension is a weighted graph, where each edge additionally
carries a weight (a real number). The weight can have a variety of meanings
in practice: distance, importance and capacity, to name a few.

Graph Representations

The way a graph is represented by a computer can affect the efficiency of vari-
ous graph algorithms. Since graph algorithms are not a focus of this course, we
instead examine the space efficiency of the different common representations.
Given a graph G = (V,E):

Adjacency Matrix. We may number the vertices v1 to vn, and represent the
edges in a n by n matrix A. Row i and column j of the matrix, aij , is 1
if and only if there is an edge from vi to vj . If the graph is undirected,
then aij = aji and the matrix A is symmetric about the diagonal; in this
case we can just store the upper right triangle of the matrix.

Adjacency Lists. We may represent a graph by listing the vertices in V ,
and for each vertex v, listing the edges that originates from V (i.e., the
set Ev = {u | (v, u) ∈ E}).

graphs 111

Edge Lists. We may simply have a list of all the edges in E, which implicitly
defines a set of “interesting” vertices (vertices that have at least one edge
entering or leaving).

If the graph is dense (i.e., has lots of edges), then consider the adjacency
matrix representation. The matrix requires storing O(n2) entries, which is
comparable to the space required by adjacency lists or edge lists if the graph
is dense. In return, the matrix allows very efficient lookups of whether an
edge (u, v) exists (by comparison, if adjacency lists are used, we would need
to traverse the whole adjacency list for the vertex u). For sparse graphs,
using adjacency lists or edge lists can result in large savings in the size of the
representation.1

Vertex Degree

The degree of a vertex corresponds to the number of edges coming out or going
into a vertex. This is defined slightly differently for directed and undirected
graphs.

Definition 7.2. In a directed graph G = (V,E), the in-degree of a vertex
v ∈ V is the number of edges coming in to it (i.e., of the form (u, v), u ∈
V); the out-degree is the number of edges going out of it (i.e., of the form
(v, u), u ∈ V). The degree of v is the sum of the in-degree and the out-degree.

In an undirected graph the degree of v ∈ V is the number of edges going
out of the vertex (i.e., of the form (v, u), u ∈ V), with the exception that self
loops (i.e., the edge (v, v)) is counted twice.

We denote the degree of vertex v ∈ V by deg(v).

This seemingly cumbersome definition actually makes a lot of sense picto-
rially: the degree of a vertex corresponds to the number of “lines” connected
to the vertex (and hence self loops in undirected graphs are counted twice).
The definition also leads to the following theorem:

Theorem 7.3. Given a (directed or undirected) graph G = (V,E), 2|E| =∑
v∈V deg(v).

Proof. In a directed graph, each edge contributes once to the in-degree of some
vertex and the out-degree of some, possibly the same, vertex. In an undirected

1 Since the advent of the internet, we now have graphs of unprecedented sizes (e.g., the
graph of social networks such as Facebook, or the graph of web pages). Storing and working
with these graphs are an entirely different science and a hot topic of research backed by both
academic and commercial interests.

112 graphs

graph, each non-looping edge contributes once to the degree of exactly two
vertices, and each self-loop contributes twice to the degree of one vertex. In
both cases we conclude that 2|E| =

∑
v∈V deg(v). �

A useful corollary is the “hand shaking lemma”:2

Corollary 7.4. In a graph, the number of vertices with an odd degree is even.

Proof. Let A be the set of vertices of even degree, and B = V \ A be the set
of vertices of odd degree. Then by Theorem 7.3,

2|E| =
∑
v∈A

deg(v) +
∑
v∈B

deg(v)

Since the LHS and the first term of RHS is even, we have that
∑

v∈B deg(v)
is even. In order for a sum of odd numbers to be even, there must be a even
number of terms. �

7.1 Graph Isomorphism

When do we consider two graphs “the same”? If the number of vertices or
edges differ, then clearly the graphs are different. Therefore let us focus on the
case when two graphs have the same number of vertices and edges. Consider:

G1 = (V1 = {a, b, c}, E1 = {(a, b), (b, c)})
G2 = (V2 = {1, 2, 3}, E2 = {(1, 2), (2, 3)})

The only difference between G1 and G2 are the names of the vertices; they
are clearly the same graph! On the other hand, the graphs

H1 = (V1 = {a, b, c}, E1 = {(a, b), (b, a)})
H2 = (V2 = {a, b, c}, E2 = {(a, b), (b, c)})

are clearly different (e.g., in H1, there is a node without any incoming or
outgoing edges.) What about the undirected graphs shown in Figure 7.1c?
One can argue that K1 and K2 are also the same graph. One way to get K2

from K1 is to rename/permute the nodes a, b and c to b, c and a, respectively.
(Can you name another renaming scheme?)

2The name stems from anecdote that the number of people that shake hands with an
odd number of people is even.

7.1. GRAPH ISOMORPHISM 113

aG1

b

c

1G2

2

3

(a) G1 and G2 are clearly
isomorphic.

aH1

b

c

aH2

b

c

(b) H1 and H2 are clearly
not isomorphic.

b a cK1

aK2

b

c

(c) Are K1 and K2 isomor-
phic?

Figure 7.1: Various examples of graph (non-)isomorphism.

Definition 7.5. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomor-
phic if there exists a bijection f : V1 → V2 such that (u, v) ∈ E1 if and only
if (f(u), f(v)) ∈ E2. The bijection f is called the isomorphism from G1 to
G2, and we use the notation G2 = f(G1).

As we would expect, the definition of isomorphism, through the use of
the bijection function f , ensures, at the very least, that the two graphs have
the same number of vertices and edges. Another observation is that given
an isomorphism f from G1 to G2, then inverse function f ′ is an isomorphism
from G2 to G1 (we leave it to the readers to verify the details); this makes
sense since we would expect isomorphisms to be symmetric.

Given two graphs, wow do we check if they are isomorphic? This is hard
problem where no efficient algorithm is known. However, if an isomorphism f
is found, it can be efficiently stored and validated (as a proper isomorphism)
by anyone. In other words, f serves as a short and efficient proof that two
graphs are isomorphic.

Can we prove that two graphs are not isomorphic in an efficient way? Sure,
if the graphs have a different number of vertices or edges. Or we may be able
to find some structure present in one graph G1 that can be checked to not
be in the other graph G2, e.g., G1 contains a “triangle” (three nodes that are
all connected to each other) but G2 doesn’t, or G1 has a vertex of degree 10
but G2 doesn’t. Unfortunately, no general and efficient method is known for
proving that two graphs are not isomorphic. This is analogous to the task of

114 graphs

Input: Graphs G0 = (V = {1, . . . , n}, E0) and G1 = (V = {1, . . . , n}, E1),
allegedly not isomorphic.

Step 1: V picks a random permutation/bijection π : {1, . . . , n} →
{1, . . . , n}, a random bit b ∈ {0, 1}, and send H = π(Gb) to P.

Step 2: P checks if H is isomorphic to G0 or G1, and send b′ = 0 or b′ = 1
to V respectively.

Step 3: V accepts (that the graph are non-isomorphic) if and only if b′ = b.

Figure 7.2: An interactive protocol for graph non-isomorphism (the verifier
should accept when G1 and G2 are not isomorphic).

proving satisfiability of a propositional formula: if a formula is satisfiable, we
can convince others of this efficiently by presenting the satisfying assignment;
convincing others that a formula is unsatisfiable seems hard.

Interactive Proofs

In 1985, Goldwasser, Micali and Rackoff, and independently Babai, found
a work around to prove that two graphs are not isomorphic. The magic is
to add interaction to proofs. Consider a proof system that consists of two
players, a prover P and a verifier V, where the players may communicate
interactively with each other, instead of the prover writing down a single proof.
In general the prover (who comes up with the proof) may not be efficient, but
the verifier (who checks the proof) must be. As with any proof system, we
desire completeness: on input non-isomorphic graphs, the prover P should be
able to convince V of this fact. We also require soundness, but with a slight
relaxation: on input isomorphic graphs, no matter what the prover says to V,
V should reject with very high probability. We present an interactive proof
for graph non-isomorphism in Figure 7.2.

Let us check that the interactive proof in Figure 7.2 is complete and sound.

Completeness: If the graphs are not isomorphic, then H is isomorphic to
Gb, but not to the other input graph G1−b. This allows P to determine
b′ = b every time.

Soundness: If the graphs are isomorphic, then H is isomorphic to both G0

and G1. Therefore it is impossible to tell from which input graph is used

7.2. PATHS AND CYCLES 115

by V to generate H; the best thing P can do is guess. With probability
1/2, we have b′ 6= b and the verifier rejects.

As of now, given isomorphic graphs, the verifier accepts or rejects with proba-
bility 1/2; this may not fit the description “reject with very high probability”.
Fortunately, we can amplify this probability by repeating the protocol (say)
100 times, and let the verifier accept if only if b = b′ is all 100 repetitions.
Then by independence, the verifier would accept in the end with probability
at most 1/2100, and reject with probability at least 1− 1/2100. Note that the
completeness of the protocol is unchanged even after the repetitions.

7.2 Paths and Cycles

Definition 7.6. A path or a walk in a graph G = (V,E) is a sequence
of vertices (v0, v2, . . . , vk) such that there exists an edge between any two
consecutive vertices, i.e. (vi, vi+1) ∈ E for 0 ≤ i < k. A cycle is a walk where
k ≥ 1 and v0 = vk (i.e., starts and ends at the same vertex). The length of
the walk, path or cycle is k (i.e., the number of edges).

A directed graph without cycles is called a DAG (a directed acyclic graph).
For undirected graphs, we are more interested in cycles that use each edge at
most once (otherwise an edge {u, v} would induce the “cycle” (u, v, u)). A
undirected graph without cycles that use each edge at most once is called a
tree. We make a few easy observations:

• On a directed graph, every walk or path is “reversible” (i.e., (vk, . . . , v0)
is also a walk/path); this is not necessarily true on a directed graph.

• We allow walks of length 0 (i.e., no walking is done). However cycles
must at least have length 1, and length 1 cycles must be a self loop.

• A walk can always be “trimmed” in such away that every vertex is visited
at most once, while keeping the same starting and ending vertices.

Example 7.7. The Bacon number of an actor or actress is the shortest path
from the actor or actress to Kevin Bacon on the following graph: the nodes are
actors and actresses, and edges connect people who star together in a movie.
The Erdös number is similarly defined to be the distance of a mathematician
to Paul Erdös on the co-authorship graph.

116 graphs

(a) A strongly connected graph.
The graph would not be strongly
connected if any edge was re-
moved.

(b) A weakly (but not strongly)
connected graph. The graph
would not be weakly connected
if any edge was removed.

Figure 7.3: The difference between strong and weak connectivity in a directed
graph.

Connectivity

Definition 7.8. An undirected graph is connected if there exists a path
between any two nodes u, v ∈ V (note that a graph containing a single node
v is considered connected via the length 0 path (v)).

The notion of connectivity on a directed graph is more complicated, be-
cause paths are not reversible.

Definition 7.9. A directed graph G = (V,E) is strongly connected if there
exists a path from any node u to any node v. It is called weakly connected if
there exists a path from an node u to any node v in the underlying undirected
graph: the graph G′ = (V,E′) where each edge (u, v) ∈ E in G induces an
undirected edge in G′ (i.e. (u, v), (v, u) ∈ E′).

When a graph is not connected (or strongly connected), we can decompose
the graph into smaller connected components.

Definition 7.10. Given a graph G = (V,E), a subgraph of G is simply a
graph G′ = (V ′, E′) with V ⊆ V and E′ ⊆ (V ′×V ′)∩E; we denote subgraphs
using G′ ⊆ G.

A connected component of graph G = (V,E) is a maximal connected
subgraph. I.e., it is a subgraph H ⊆ G that is connected, and any larger
subgraph H ′ (satisfying H ′ 6= H, H ⊆ H ′ ⊆ G) must be disconnected.

We may similarly define a strongly connected component as a maximal
strongly connected subgraph.

7.2. PATHS AND CYCLES 117

(a) Connected components of the graph are cir-
cled in red. Note that there are no edges be-
tween connected components.

(b) Strongly connected components of the
graph are circled in red. Note that there can
still be edges between strongly connected
components.

Figure 7.4: Example connected components.

Computing Connected Components

We can visualize a connected component by starting from any node v in the
(undirected) graph, and “grow” the component as much as possible by in-
cluding any other node u that admits a path from v. Thus, first we need an
algorithm to check if there is a path from a vertex v to another vertex u 6= v.

Breadth first search (BFS) is a basic graph search algorithm that traverses
a graph as follows: starting from a vertex v, the algorithm marks v as visited,
and traverses the neighbors of v (nodes that share an edge with v). After
vising the neighbors of v, the algorithms recursively visits the neighbors of
the neighbors, but takes care to ignore nodes that have been visited before.
We claim that the algorithm eventually visits vertex u if and only if there is
a path from v to u.3

3We have avoided describing implementation details of BFS. It suffice to say that BFS
is very efficient, and can be implemented to run in linear time with respect to the size of
the graph. Let us also mention here that an alternative graph search algorithm, depth first
search (DFS), can also be used here (and is more efficient than BFS at computing strongly

118 graphs

To see why, first note that if there are no path between v and u, then of
course the search algorithm will never reach u. On the other hand, assume
that there exists a path between v and u, but for the sake of contradiction,
that the BFS algorithm does not visit u after all the reachable vertices are
visited. Let w be the first node on the path from v to u that is not visited by
BFS (such a node must exists because u is not visited). We know w 6= v since
v is visited right away. Let w−1 be the vertex before w on the path from v to
u, which must be visited because w is the first unvisited vertex on the path.
But this gives a contradiction; after BFS visits w−1, it must also visit w since
w is an unvisited neighbor of w−1.4

Now let us use BFS to find the connected components of a graph. Simply
start BFS from any node v; when the graph search ends, all visited vertex form
one connected component. Repeat the BFS on remaining unvisited nodes to
recover additional connected components, until all nodes are visited.

Euler and Hamiltonian Cycles

A cycle that uses every edge in a graph exactly once is called a Euler cycle5 A
cycle that uses every vertex in a graph exactly once, except the starting and
ending vertex (which is visited exactly twice), is called a Hamiltonian cycle.

How can we find a Euler cycle (or determine that one does not exist)? The
following theorem cleanly characterizes when a graph has an Eulerian cycle.

Theorem 7.11. A undirected graph G = (V,E) has an Euler cycle if and
only if G is connected and every v ∈ V has even degree. Similarly, a directed
graph G = (V,E) has an Euler cycle if and only if G is strongly connected and
every v ∈ V has equal in-degree and out-degree.

Proof. We prove the theorem for the case of undirected graphs; it generalizes
easily to directed graphs. First observe that if G has a Euler cycle, then of
course G is connected by the cycle. Because every edge is in the cycle, and
each time the cycle visits a vertex it must enter and leave, the degree of each
vertex is even.

To show the converse, we describe an algorithm that builds the Eulerian
cycle assuming connectivity and that each node has even degrees. The algo-
rithm grows the Euler cycle in iterations. Starting from any node v, follow

connected components in directed graphs).
4 This argument can be extended to show that in fact, BFS would traverse a shortest

path from v to u.
5Originally, Euler was searching for a continuous route that crosses all seven bridges in

the city of Königsberg exactly once.

7.2. PATHS AND CYCLES 119

any path in the graph without reusing edges (at each node, pick some unused
edge to continue the path). We claim the path must eventually return to v;
this is because the path cannot go on forever, and cannot terminate on any
other vertex u 6= v do to the even degrees constraint: if there is an available
edge into u, there is also an available edge out of u. That is, we now have a
cycle (from v to v). If the cycle uses all edges in G then we are done.

Otherwise, find the first node on the cycle, w, that still has an unused
edge; w must exist since otherwise the cycle would be disconnected from the
part G that still has unused edges. We repeat the algorithm starting from
vertex w, resulting in a cycle from w to w that does not have repeated edges,
and does not use edges in the cycle from v to v. We can then “stitch” these
two cycles together into a larger cycle:

v w w v

path from v to
w in v’s cycle

cycle from
w to w

path from w to
v in v’s cycle

Eventually the algorithm terminates after finite iterations (since we steadily
use up edges in each iteration). When the algorithm terminates, there are no
more unused edges, and so we have a Euler cycle. �

We can relax the notion of Euler cycles into Euler paths — a path that
uses every edge in the graph exactly once.

Corollary 7.12. A undirected graph G = (V,E) has an Euler path, but not
a Euler cycle, if and only if the graph is connected and exactly two nodes has
an odd degree.

Proof. Again it is easy to see that if G has a Euler path that is not a cycle,
then the graph is connected. Moreover, the starting and ending nodes of the
path, and only these two nodes, have an odd degree.

To prove the converse, we reduce the problem into finding an Euler cycle.
Let u, v ∈ V be the unique two nodes that have an odd degree. Consider
introducing an extra node w and the edges {u,w}, {v, w}. This modified
graph satisfies the requirements for having a Euler cycle! Once we find the
cycle in the modified graph, simply break the cycle at node w to get a Euler
path from u to v in the original graph. �

How can we compute Hamiltonian cycles or paths? Of course we can
always do a brute force search on all possible paths and cycles. As of now,
no efficient algorithm for computing Hamiltonian cycles (or deciding whether

120 graphs

one exists) is known. In fact, this problem is NP-complete, i.e., as hard as
deciding whether a propositional formula is satisfiable.

7.3 Graph Coloring

In this section we discuss the problem of coloring the vertices of a graph, so
that vertices sharing an edge gets different colors.

Definition 7.13. A (vertex) coloring of an undirected graph G = (V,E) is
function c : V → N (that assigns color c(v) to node v ∈ V) such that nodes
that share an edge has different colors, i.e., ∀(u, v) ∈ E, c(u) 6= c(v).

Definition 7.14. A graph is k-colorable if it can be colored with k colors,
i.e., i.e., there exists a coloring c satisfying ∀v ∈ V, 0 ≤ c(v) < k. The
chromatic number χ(G) of a graph G is the smallest number such that G is
χ(G)-colorable.

Here are some easy observations and special cases of graph coloring:

• A fully connected graph with n nodes (i.e., every two distinct nodes
share an edge) has chromatic number n; every node must have a unique
color, and every node having a unique color works.

• The chromatic number of a graph is bounded by the max degree of any
vertex plus 1 (i.e., χ(G) ≤ 1 + maxv∈V deg(v)). With this many colors,
we can color the graph one vertex at a time, by choosing the smallest
color that has not been taken by its neighbors.

• A graph is 1-colorable if and only if it does not have edges.

• It is easy to check if a graph is 2-colorable. Simply color an arbitrary
vertex v black, then color the neighbors of v white, and the neighbors
of neighbors of v black, etc. The graph is 2-colorable if and only if this
coloring scheme succeeds (i.e., produces a valid coloring).

In general, determining whether a graph is 3-colorable is NP-complete, i.e., as
hard as determining whether a formula is satisfiable.

Coloring Planar Graphs. A graph is planar if all the edges can be drawn
on a plane (e.g., a piece of paper) without any edges crossing. A well-known
result in mathematics state that all planar graphs are 4-colorable. E.g., the
complete graph with 5 nodes cannot be planar, since it requires 5 colors! Also

7.3. GRAPH COLORING 121

known as the “4 color map theorem”, this allow any map to color all the
countries (or states, provinces) with only four colors without ambiguity (no
neighboring countries will be colored the same). In general, checking whether
planar graphs are 3-colorable is still NP-complete.

Applications of Graph Coloring. In task scheduling, if we have a graph
whose nodes are tasks, and whose edges connects tasks that are conflicting
(e.g., they both require some common resource), then given a coloring, all
tasks of the same color can be performed simultaneously. An optimal coloring
would partition the tasks into a minimal number of groups (corresponding to
the chromatic number).

To decide the number of registers needed to compute a function, consider
a graph where the nodes are variables and the edges connect variables that go
through a joint operation (i.e., need to be stored on separate registers). Then
each color in a coloring corresponds to a need of registers, and the chromatic
number is the minimum number of registers required to compute the function.

An Interactive Proof for 3-Coloring

Consider the interactive proof for graph 3-coloring presented in Figure 7.5.
Clearly the protocol in Figure 7.5 is complete; if the graph is 3-colorable, the

Input: A graph G = (V,E), allegedly 3-colorable.

Step 1: P computes a 3-coloring c : V → {0, 1, 2} of the graph, and picks
a random permutation of the three colors: σ : {0, 1, 2} → {0, 1, 2}. P
then colors the graph G with the permuted colors (i.e., the coloring
σ(c(v))) and sends the colors to of each vertex to V, but covers each
vertex using a “cup”.

Step 2: V chooses a random edge (u, v) ∈ E.

Step 3: P removes the cups covering u and v to reveal their colors, σ(c(u))
and σ(c(v)).

Step 4: V accepts if and only if σ(c(u)) 6= σ(c(v)).

Figure 7.5: An interactive protocol for graph non-isomorphism (the verifier
should accept when G1 and G2 are not isomorphic).

prover will always convince the verifier by following the protocol. What if the

122 graphs

graph is not 3-colorable? With what probability can the prover cheat? The
coloring σ(c(v)) must be wrong for at least one edge. Since the verifier V asks
the prover P to reveal the colors along a random edge, P will be caught with
probability 1/|E|.

As with before, even though the prover may cheat with a seemingly large
probability, 1−1/|E|, we can amplify the probabilities by repeating the proto-
col (say) 100|E| times. Due to independence, the probability that the prover
successfully cheats in all 100|E| repetitions is bounded by

(
1− 1
|E|

)100|E|
=

((
1− 1
|E|

)|E|)100

≈ e−100

The zero-knowledge property. It is easy to “prove” that a graph is 3-
colorable: simply write down the coloring! Why do we bother with the in-
teractive proof in Figure 7.5? The answer is that it has the zero-knowledge
property.

Intuitively, in a zero-knowledge interactive proof, the verifier should not
learn anything from the interaction other than the fact that the proof state-
ment proved is true. E.g., After the interaction, the verifier cannot better
compute a 3-coloring for the graph, or better predict the weather for tomor-
row. Zero-knowledge is roughly formalized by requiring that the prover only
tells the verifier things that he already knows — that the prover messages
could have been generated by the verifier itself.

For our 3-coloring interactive proof, it is zero-knowledge because the prover
messages consists only of two random colors (and anyone can pick out two
random colors from {0, 1, 2}).

Implementing electronic “cups”. To implement a cup, the prover P can
pick an RSA public-key (N, e) and encrypt the color of each node using Padded
RSA. To reveal a cup, the prover simply provide the color and the padding
(and the verifier can check the encryption). We use Padded RSA instead of
plain RSA because without the padding, the encryption of the same color
would always be the same; essentially, the encryptions themselves would give
the coloring away.

7.4 Random Graphs [Optional]

A rich subject in graph theory is the study of the properties of randomly
generated graphs. We give a simple example in this section.

7.4. RANDOM GRAPHS [OPTIONAL] 123

Consider the following random process to generate a n vertex graph: for
each pair of vertices, randomly create an edge between them with independent
probability 1/2 (we will not have self loops). What is the probability that two
nodes, u, and v, are connected with a path of length at most 2? (This is a
simple version of “six degrees of separation”.)

Taking any third node w, the probability that the path u–w–v does not
exist is 3/4 (by independence). Again by independence, ranging over all pos-
sible third nodes w, the probability the path u–w–v does not exist for all
w 6= u,w 6= v is (3/4)n−2. Therefore, the probability that u and v are more
than distance 2 part is at most (3/4)n−2.

What if we look at all pairs of nodes? By the union bound (Corollary 5.13),
the probably the same pair of node is more than distance 2 apart is

Pr

⋃
u6=v

u, v has distance ≥ 2

 ≤∑
u6=v

Pr[u, v has distance ≥ 2]

≤ n(n− 1)
2

(
3
4

)n−2

This quantity decreases very quickly as the number of vertices, n increases.
Therefore it is most likely that every pair of nodes is at most distance 2 apart.

Chapter 8

Finite Automata

“No finite point has meaning without an infinite reference point.”
– Jean-Paul Sartre.

A finite automaton is a mathematical model for a very simple form of com-
puting. As such, we are most interested in what it can and cannot compute.
More precisely, a finite automaton takes as input a string of characters (taken
from some alphabet Σ, typically Σ = {0, 1}), and outputs “accept” or “reject”.
Always accepting or rejecting would be considered “easy computing”, while
accepting if and only if the input string fits a complex pattern is considered
“more powerful computing”. What power does a finite automaton hold?

8.1 Deterministic Finite Automata

Definition 8.1. A deterministic finite automaton (DFA) is a 5-tuple M =
(S,Σ, f, s0, F) where

• S is a finite set of states.

• Σ is a finite input alphabet (e.g., {0, 1}).

• f is a transition function f : S × Σ→ S.

• s0 ∈ S is the start state (also called the initial state).

• F ⊆ S is a set of final states (also called the accepting states).

Here is how a DFA operates, on input string x. The DFA starts in state
s0 (the start state). It reads the input string x one character at at time, and
transition into a new state by applying the transition function f to the current

125

126 finite automata

state and the character read. For example, if x = x1x2 · · · , the DFA would
start by transitioning through the following states:

s(0) = s0︸ ︷︷ ︸
starting state

→ s(1) = f(s(0), x1)︸ ︷︷ ︸
after reading x1

→ s(2) = f(s(1), x2)︸ ︷︷ ︸
after reading x2

After reading the whole input x, if the DFA ends in an accepting state ∈ F ,
then x is accepted. Otherwise x is rejected.

Definition 8.2. Given an alphabet Σ, a language L is just a set of strings
over the alphabet Σ, i.e., L ⊆ Σ∗. We say a language L is accepted or
recognized by a DFA M , if M accepts an input string x ∈ Σ∗ if and only if
x ∈ L.

We can illustrate a DFA with a graph: each state s ∈ S becomes a node,
and each mapping (s, σ) 7→ t in the transition function becomes an edge from
s to t labeled by the character σ. The start state is usually represented by an
extra edge pointing to it (from empty space), while the final states are marked
with double circles.

Example 8.3. Consider the alphabet Σ = {0, 1} and the DFAM = (S,Σ, f, s0, F)
defined by

S = {s0, s1} F = {s0}
f(s0, 0) = s0 f(s0, 1) = s1

f(s1, 0) = s1 f(s1, 1) = s0

The DFA M accepts all strings that has an even number of 1s. Intuitively,
state s0 corresponds to “we have seen an even number of 1s”, and state s1

corresponds to “we have seen an odd number of 1s”. A graph of M looks like:

s0 s1

1

0

1

0

Automata with output. Occasionally we consider DFAs with output. We
extend the transition function to have the form f : S × Σ→ S × Σ; i.e., each
time the automata reads a character and makes a transition, it also outputs
a character. Additional extensions may allow the DFA to sometimes output
a character and sometimes not.

8.1. DETERMINISTIC FINITE AUTOMATA 127

s0
reads 1i−−−−−−→ s∗(= si)

reads 1t−−−−−−→ s∗(= sj)
reads 1c−i−t−−−−−−−−−→ sc

(a) State transitions of M when it accepts the string 1c.

s0
reads 1i−−−−−−→ s∗

reads 1t−−−−−−→ s∗
reads 1t−−−−−−→ s∗

reads 1c−i−t−−−−−−−−−→ sc

(b) State transitions of M when it accepts the string 1c+t.

Figure 8.1: Illustration for Lemma 8.4. If a DFA M with < c states accepts
the string 1c, then it must also accept infinitely many other strings.

Limits of Deterministic Finite Automata

Finite automata can recognize a large set of languages (see regular expressions
later), but also have some basic limitations. For example, they are not good
at counting.

Lemma 8.4. Let c be a constant and L = {1c} (the singleton language con-
taining the string of c many 1s). Then no DFA with < c states can accept
L.

Proof. Assuming the contrary that some DFA M with < c states accepts
L. Let s0, . . . , sc be the states traversed by M to accept the string 1c (and
so sc ∈ F is an accept state). By the pigeon hold principle, some state is
repeated twice, say s∗ = si = sj with j > i. Let t = j − i.

We now claim that M must also accept the strings 1c+t, 1c+2t, etc; let us
describe the behavior of M on these inputs. Starting from s0, after reading
1i, M ends up in state s∗ = si. From this point on, for every t many 1s in the
input, M will loop back to state s∗ = si = sj . After sufficiently many loops,
M reads the final c − i − t many 1s, and transition from state s∗ = sj to sc,
an accept state. See Figure 8.1.

This gives a contradiction, since M accepts (infinitely) more strings than
the language L. �

On the other hand, see Figure 8.2 for a DFA with c+ 2 states that accepts
the language {1c}. The techniques of Lemma 8.1 can be generalized to show
the pumping lemma:

128 finite automata

s0 s1 s2 hell
1

0

1

0

0,1
0,1

Figure 8.2: A DFA with 4 states that accepts the language {12}. This can
be easily generalized to construct a DFA with c + 2 states that accepts the
language {1c}.

Lemma 8.5 (Pumping Lemma). If M is a DFA with k states and M accepts
some string x with |x| > k, there there exists strings u, v and w such that
x = uvw, |uv| ≤ k, |v| ≥ 1 and uviw is accepted by M for i ∈ N.

Proof sketch. Again let s0, . . . , s|x| be the states that M travels through to
accept the string x¿ Due to the pigeonhole principle, some state must be
repeated among s0, . . . , sk, say s∗ = si = sj with 0 ≤ i < j ≤ k. We can now
set u to be the first i characters of x, v to be the next j − i > 0 characters of
x, and w to be the rest of x. �

Example 8.6. No DFA can accept the language L = {0n1n | n ∈ N} (intu-
itively, this is another counting exercise). If we take any DFA with N states,
and assume that it accepts the string 0N1N , then the pumping lemma says
that the same DFA must accept the strings 0N+t1N , 0N+2t1N , etc., for some
0 < t ≤ N .

Example 8.7. No DFA can accept the language L = {0n2 | n ∈ N}. If
we take any DFA with N states, and assume that it accepts the string 0N

2
,

then the pumping lemma says that the same DFA must accept the strings
0N

2+t, 0N+2t, etc., for some 0 < t ≤ N . (In particular, 0N
2+t /∈ L because

0 < t ≤ N .)

A game theory perspective. Having a computing model that does not
count may be a good thing. Consider the repeated prisoner’s dilemma from
game theory. We have two prisoners under suspicion for robbery. Each pris-
oner may either cooperate (C) or defect (D) (i.e., they may keep their mouths
shut, or rat each other out). The utilities of the players (given both players’
choices) are as follows (they are symmetric between the players):

8.1. DETERMINISTIC FINITE AUTOMATA 129

C D
C (3, 3) (−5, 5)
D (5,−5) (−3,−3)

Roughly the utilities say the following. Both players cooperating is fine (both
prisoners get out of jail). But if one prisoner cooperates, the other should
defect (not only does the defector get out of jail, he always gets to keep the
root all to himself, while his accomplish stays in jail for a long time). If both
players defect, then they both stay in jail.

In game theory we look for a stable state called a Nash equilibrium; we
look a pair of strategies for the prisoners such that neither player has any
incentive to deviate. It is unfortunate (although realistic) that the only Nash
equilibrium here is for both prisoners to defect.

Now suppose we repeat this game 100 times. The total utility of a player
is
∑100

i=1 δ
iu(i) where u(i) the utility of the player in round i, and 0 < δ < 1

is a discount factor (for inflation and interests over time, etc.). Instead of
prisoners, we now have competing stores on the same street. To cooperate is
to continue business as usual, while to defect means to burn the other store
down for the day.

Clearly cooperating all the way seems best. But knowing that the first
store would cooperate all the time, the second store should defect in that last
(100th) round. Knowing this, the first store would defect the round before
(99th round). Continuing this argument1, the only Nash equilibrium is again
for both prisoners to always defect.

What happens in real life? Tit-for-tat2 seems to be the most popular
strategy: cooperate or defect according to the action of the other player in
the previous round (e.g., cooperate if the other player cooperated). How can
we change our game theoretical model to predict the use of tit-for-tat?

Suppose players use a DFA (with output) to compute their decisions; the
input is the decision of the other player in the previous round. Also assume
that players need to pay for the number of states in their DFA (intuitively,
having many states is cognitively expensive). Then tit-for-tat is a simple DFA
with just 1 state s, and the identity transition function: f(s, C) = (s, C),
f(s,D) = (s,D). Facing a player that follows tit-for-tat, the best strategy
would be to cooperate until round 99 and then defect in round 100. But we
have seen that counting with DFA requires many states (and therefore bears
a heavy cost)! This is especially true if the game has more rounds, or if the

1See “Induction and Rationality” in Section 2.5
2In a famous example in 2000, Apple removed all promotions of ATI graphic cards after

ATI prematurely leaked information on upcoming Macintosh models.

130 finite automata

discount factor δ is harsh (i.e., � 1). If we restrict ourselves to 1-state DFAs,
then both players following tit-for-tat is a Nash equilibrium.

8.2 Non-Deterministic Finite Automata

A non-deterministic finite automaton (NFA) is really just a DFA except that
for each character in the alphabet, there may be several edges going out of
each state. In other words, after reading a character from the input string, an
NFA is given a choice to transition to multiple states. We formalize this by
allowing the transition function to output a set of possible new states.

Definition 8.8. A nondeterministic finite automaton (NFA) is a 5-tuple M =
(S,Σ, f, s0, F) where

• S is a finite set of states.

• Σ is a finite input alphabet.

• f is a transition function f : S × Σ→ P(S).

• s0 ∈ S is the start state (also called the initial state).

• F ⊆ S is a set of final states (also called the accepting states).

An NFA M is said to accept an input string x if it is possible to transition
from the start state s0 to some final state s ∈ F . More formally, M is said
to accept x if there exists a sequence of states s0, s1, . . . s|x| such that s0 = s0,
s|x| ∈ F and for each i ∈ {0, . . . , |x| − 1}, si+1 ∈ f(si, xi). As before, we say
M accepts (or recognizes) a language L for all inputs x, M accepts x if and
only if x ∈ L. Note that just as it is possible for a state to have multiple
possible transitions after reading a character, a state may have no possible
transitions. An input that simply does not have a sequence of valid state
transitions (ignoring final states altogether) is of course rejected.

Note that an NFA is not a realistic “physical” model of computation.
At any point in the computation where there are multiple possible states to
transition into, it is hard to find locally the “correct transition”. An alternative
model of computation is a randomized finite automaton (RFA). A RFA is
much like an NFA, with the additional property that whenever there is a
choice of transitions, the RFA would specify the probability with which the
automaton transitions to each of the allowed states. Correspondingly, a RFA
not simply accept or reject an input x, but instead accepts each input with
some probability. Compared to an NFA, a RFA is a more realistic “physical”
model of computation.

8.2. NON-DETERMINISTIC FINITE AUTOMATA 131

s0 s1 s2 s3 hell
1

0,1

0,1 0,1 0,1
0,1

Figure 8.3: A NFA with 5 states that accepts the language L3. Intuitively,
given a string x ∈ L3, the NFA would choose to remain in state s0 until it
reads the third last character; it would then (magically decide to) transition to
state s1, read the final two characters (transitioning to s2 and s3), and accept.
The converse that any x accepted by the NFA must be in the language L3 is
easy to see. This can be easily generalized to construct an NFA with n + 2
states that accepts the language Ln.

Example 8.9. Consider the language Ln = {x ∈ {0, 1}∗ | |x| ≥ n, x|x|−n = 1}
(i.e., the language of bit strings where the nth bit counting from the end is a
1). Ln can be recognized by a O(n)-state NFA, as illustrated in Figure 8.3.

On the other hand, any DFA that recognizes Ln must have at least 2n

states. (Can you construct a DFA for recognizing this language?) Let M be
a DFA with less than 2n states. By the pigeonhole principle, there exists 2
n-bit strings x and x′ such that M would reach the same state s after reading
x or x′ as input (because there are a total of 2n n-bit strings). Let x and x′

differ in position i (1 ≤ i ≤ n), and without loss of generality assume that
xi = 1 and x′i = 0. Now consider the strings x̂ = x1n−i and x̂′ = x′1n−i (i.e.,
appending the string of n− i many 1s). M would reach the same state after
reading x̂ or x̂′ (since it reached the same state after reading x or x′), and
so M must either accept both strings or reject both strings. Yet x̂ ∈ Ln and
x̂′ /∈ Ln, i.e., M does not recognize the language Ln.

Clearly, any language recognized by a DFA can be recognized by a NFA
since any DFA is a NFA. The following result show that the converse is true
too: any NFA can be converted into a DFA that recognizes the same lan-
guage. The conversion described below causes an exponential blow-up in the
number of states of the automaton; as seen in Example 8.9, such a blow-up is
sometimes necessary.

Theorem 8.10. Let M be an NFA and L be the language recognized by M .
Then there exists a DFA M that recognizes the same language L.

Proof. Let M = (S,Σ, f, s0, F) be an NFA. We construct a DFA M ′ =
(T,Σ, f ′, t0, F ′) as follows:

132 finite automata

• Let T = P(S); that is, each state t of M ′ corresponds to a subset of
states of M .

• Upon reading the character σ ∈ Σ, we transition from state t ∈ P(S) to
the state corresponding to the union of all the possible states that M
could have transitioned into, if M is currently in any state s ∈ t. More
formally, let

f ′(t, σ) =
⋃
s∈t

f(s, σ)

• The start state of M ′ is the singleton state containing the start state of
M , i.e., t0 = {s0}.

• The final states of M ′ is any state that contains a final state of M , i.e.,
F ′ = {t ∈ T = P(S) | t ∩ F 6= ∅}.

Intuitively, after reading any (partial) string, the DFA M ′ tries to keep track
of all possible states that M may be in.

We now show that the DFA M ′ accepts any input x if and only if the NFA
M accepts x. Assume that M accepts x; that is, there exists some path of
computation s0, s1, . . . , s|x| such that s0 = s0, s|x| ∈ F , and si+1 ∈ f(si, xi).
Consider the (deterministic) path of computation of M ′ on input x: t0, . . . , t|x|.
It can be shown inductively that si ∈ ti for all 0 ≤ i ≤ |x|:
Base case. s0 ∈ t0 since t0 = {s0} by definition.
Inductive step. If si ∈ ti, then because si+1 ∈ f(si, xi), we also have

si+1 ∈ ti+1 =
⋃
s∈ti

f(s, xi)

We conclude that s|x| ∈ t|x|. Since s|x| ∈ F , we have t|x| ∈ F ′ and so M ′ would
accept x.

For the converse direction, assume M ′ accepts x. Let t0, . . . , t|x| be the
deterministic computation path of M ′, with t0 = t0 and t|x| ∈ F ′. From this
we can inductively define an accepting sequence of state transitions for M on
input x, starting from the final state and working backwards.
Base case. Because t|x| ∈ F ′, there exists some s|x| ∈ τ |x| such that sk ∈ F .
Inductive step. Given some si+1 ∈ ti+1, then there must exist some si ∈ ti
such that si+1 ∈ f(si, xi) (in order for ti to transition to ti+1.
It is easy to see that the sequence s0, . . . , s|x|, inductively defined above, is
an valid, accepting sequence of state transitions for M on input x: s0 = s0

since s0 ∈ t0 = t0 = {s0}, s|x| ∈ F by the base case of the definition, and
the transitions are valid by the inductive step of the definition. Therefore M
accepts x. �

8.3. REGULAR EXPRESSIONS AND KLEENE’S THEOREM 133

8.3 Regular Expressions and Kleene’s Theorem

Regular expressions provide an “algebraic” way of specifying a language:
namely, we start off with some basic alphabet and build up the language
using a fixed set of operations.

Definition 8.11. The set of regular expressions over alphabet Σ are de-
fined inductively as follows:

• the symbols “∅” and “ε” are regular expressions.

• the symbol “x” is a regular expression if x ∈ Σ (we use boldface to
distinguish the symbol x from the element x ∈ Σ).

• if A and B are regular expressions, then so are A|B (their alternation),
AB (their concatenation), and A∗ (the Kleene star of A).

Usually the Kleene star takes precedence over concatenation, which takes
precedence over alternation. In more complex expressions, we use parenthesis
to disambiguate the order of operations between concatenations, alternations
and Kleene stars. Examples of regular expressions over the lower case letters
include: ab|c∗, (a|b)(c|ε), ∅. A common extension of regular expressions is
the “+” operator; A+ is interpreted as syntactic sugar (a shortcut) for AA∗.

As of now a regular expression is just a syntactic object — it is just a
sequence of symbols. Next we describe how to interpret these symbols to
specify a language.

Definition 8.12. Given a regular expression E over alphabet Σ, we induc-
tively define L(E), the language specified by E, as follows:

• L(∅) = ∅ (i.e., the empty set).

• L(ε) = {ε} (i.e., the set consisting only of the empty string).

• L(x) = {x} (i.e., the singleton set consisting only of the one-character
string “x”).

• L(AB) = L(A)L(B) = {ab | a ∈ L(A), b ∈ L(B)}.

• L(A|B) = L(A) ∪ L(B).

• L(A∗) = L(A)∗ = {ε} ∪ {a1a2 · · · an | n ∈ N+, ai ∈ L(A)}. (note that
this is a natural extension of the star notation defined in Definition 1.11).

134 finite automata

Example 8.13. The parity language consisting of all strings with an even
number of 1s can be specified by the regular expression (0∗10∗10∗)∗. The
language consisting of all finite strings {0, 1}∗ can be specified either by (0|1)∗

or (0∗1∗)∗.

Languages that can be expressed as a regular expression are called regular.
The class of regular languages are used in a wide variety of applications such
as pattern matching or syntax specification.

Definition 8.14. A language L over alphabet Σ is regular if there exists a
regular expression E (over Σ) such that L = L(E).

Kleene’s Theorem [Optional]

It turns out that DFAs, and thus also NFAs, recognize exactly the class of
regular languages.

Theorem 8.15 (Kleene). A language is regular if and only if it is recognized
by a DFA M .

We can proof Kleene’s Theorem constructively. That is, given any DFA,
we can generate an equivalent regular expression to describe the language
recognized by the DFA, and vice versa. We omit the formal proof of Kleene’s
Theorem; in the rest of this section, we give an outline of how a regular
expression can be transformed into a NFA (which can then be transformed
into a DFA).

Converting Regular Expressions to NFAs

We sketch how any regular language can be recognized by a NFA; since NFAs
are equivalent to DFAs, this means any regular language can be recognized
by a DFA as well. The proof proceeds by induction over regular expressions.

Base case: It is easy to show that the language specified by regular
expressions ∅, ε, and x for x ∈ Σ can be recognized by a NFA (also see
Figure 8.4):

• L(∅) is recognized by a NFA/DFA without any final states.

• L(ε) is recognized by a NFA where the start state is also a final state,
and has outgoing transitions.

• L(x) can be recognized by a NFA where the start state transitions to a
final state on input x, and has no other transitions.

8.3. REGULAR EXPRESSIONS AND KLEENE’S THEOREM 135

x

Figure 8.4: NFAs that recognize the languages ∅, ε and x, respectively.

Inductive step: Next we show that regular languages specified by regular
expressions of the form AB, A|B and A∗ can be recognized by NFAs.

Case AB: Let the languages L(A) and L(B) be recognized by NFAs MA

and MB, respectively. Recall that L(AB) contains strings that can be
divided into two parts such that the first part is in L(A), recognized
by MA, and the second part is in L(B), recognized by MB. Hence
intuitively, we need a combined NFA MAB that contains the NFA MA

followed by the NFA MB, sequentially. To do so, let us “link” the
final states of MA to the start state of MB. One way to proceed is
to modify all the final states in MA, by adding to them all outgoing
transitions leaving the start state of MB (i.e., each final state in MA

can now function as the start state of MB and transition to appropriate
states in MB.)

The start state of MAB is the start state of MA. The final states of
MAB is the final states of MB; furthermore, if the start state of MB is
final, then all of the final states in MA is also final in MAB (because we
want the final states of MA to be “linked” to the start state of MB).
We leave it to the readers to check that this combined NFA MAB does
indeed accept strings in L(AB), and only strings in L(AB).

Before we proceed onto other cases, let us abstract the notion of a “link” from
above. The goal of a “link” from state s to t, is to allow the NFA to (nonde-
terministically) transition from state s to state t, without reading any input.
We have implemented this “link” above by adding the outgoing transitions of
t to s (i.e., this simulate the case when the NFA nondeterministically transi-
tions to state t and then follows one of t’s outgoing transition). We also make
s a final state if t is a final state (i.e., this simulate the case when the NFA
nondeterministically transitions to state t and then halt and accepts).

Case A|B: Again, let the languages L(A) and L(B) be recognized by NFAs
MA and MB, respectively. This time, we construct a machine MA|B
that contains MA, MB and a brand new start state s0, and add “links”

136 finite automata

from s0 to the start state of MA and MB. Intuitively, at state s0, the
machine MA|B must nondeterministically decide whether to accept the
input string as a member of L(A) or as a member of L(B). The start
state of MA|B is the new state s0, and the final states of MA|B are all
the final states of MA and MB.3

Case A∗: Let the languages L(A) be recognized by NFA MA. Consider the
NFA MA+ that is simply the NFA MA but with “links” from its final
states back to its start state (note that we have not constructed the
machine MA∗ yet; in order for a string to be accepted by MA+ as de-
scribed above, the string must be accepted by the machine MA at least
once). We can then construct the machine MA∗ by using the fact that
the regular expressions ε|A+ and A∗ are equivalent.

ε-transitions. The notion of a “link” above can be formalized as a special
type of transition, called ε-transitions. It can be shown that NFAs have the
same power (can accept exactly the same languages), whether or not it has
access to ε-transitions or not.

3A tempting solution is to instead “merge” the start state of MA and MB (combining
their incoming and outgoing transitions), and make the newly merged state the start state of
MA|B . This does not work, because such a merger does not force the NFA MA|B to “choose”
between MA and MB ; on some input, MA|B may transition between the states of MA and
MB multiple times via the merged state. Can you come up with a counter example?

Appendix A

Problem Sets

A.1 Problem Set A

Problem 1 [6 points]

Let a0 = −1, a1 = 0, and for n ≥ 2, let an = 3an−1 − 2an−2.
Write a closed-form expression for an (for n ≥ 0), and prove using strong

induction that your expression is correct. (You must use strong induction
for this problem. Some clarification: “closed-form expression for an” simply
means an expression for an that depends only on n (and other constants)
and is not defined recursively, i.e., does not depend on an−1 or other previous
terms of the sequence.)

Problem 2 [5 points]

Compute (38002 · 7201) mod 55. Show your work.

Problem 3 [2 + 4 = 6 points]

Let p ≥ 3 be any prime number. Let c, a ∈ {1, . . . , p − 1} such that a is a
solution to the equation x2 ≡ c (mod p), i.e., a2 ≡ c (mod p).

(a) Show that p − a is also a solution to the equation x2 ≡ c (mod p), i.e.,
(p− a)2 ≡ c (mod p).

(b) Show that a and p − a are the only solutions to the equation x2 ≡ c
(mod p) modulo p, i.e., if b ∈ Z satisfies b2 ≡ c (mod p), then b ≡ a
(mod p) or b ≡ p− a (mod p).

137

138 problem sets

Problem 4 [4 points]

How many solutions are there to the equation a+b+c+d = 30, if a, b, c, d ∈ N?
(N includes the number 0. You do not need to simplify your answer.)

Problem 5 [2 + 2 + 4 = 8 points]

Let n be a positive even integer.

(a) How many functions f : {0, 1}n → {0, 1}n are there that do not map an
element to itself (i.e., f satisfies f(x) 6= x for all x ∈ {0, 1}n)?

(b) Given a string x ∈ {0, 1}n, let xrev denote the string in {0, 1}n obtained
from x by reversing the ordering of the bits of x (e.g., the first bit of xrev

is the last bit of x, etc.). How many strings x ∈ {0, 1}n satisfy xrev = x?
Justify your answer.

(c) How many functions f : {0, 1}n → {0, 1}n are there that satisfy f(x) 6= x
and f(x) 6= xrev for all x ∈ {0, 1}n? Justify your answer.

Problem 6 [6 points]

Let n, r, k ∈ N+ such that k ≤ r ≤ n. Show that
(
n
r

)(
r
k

)
=
(
n
k

)(
n−k
r−k
)

by using a
combinatorial argument (i.e., show that both sides of the equation count the
same thing).

Problem 7 [3 + 3 = 6 points]

A certain candy similar to Skittles is manufactured with the following proper-
ties: 30% of the manufactured candy pieces are sweet, while 70% of the pieces
are sour. Each candy piece is colored either red or blue (but not both). If a
candy piece is sweet, then it is colored blue with 80% probability (and colored
red with 20% probability), and if a piece is sour, then it is colored red with
80% probability. The candy pieces are mixed together randomly before they
are sold. You bought a jar containing such candy pieces.

(a) If you choose a piece at random from the jar, what is the probability that
you choose a blue piece? Show your work. (You do not need to simplify
your answer.)

(b) Given that the piece you chose is blue, what is the probability that the
piece is sour? Show your work. (You do not need to simplify your
answer.)

A.1. PROBLEM SET A 139

Problem 8 [3 + 3 = 6 points]

A literal is an atom (i.e., an atomic proposition) or the negation of an atom
(e.g., if P is an atom, then P is a literal, and so is ¬P). A clause is a formula
of the form li∨lj∨lk, where li, lj , lk are literals and no atom occurs in li∨lj∨lk
more than once (e.g., P ∨¬Q∨¬P is not allowed, since the atom P occurs in
P ∨ ¬Q ∨ ¬P more than once).

Examples: P1 ∨ ¬P2 ∨ ¬P4 is a clause, and so is P2 ∨ ¬P4 ∨ ¬P5.

(a) Let C be a clause. If we choose a uniformly random interpretation by
assigning True with probability 1

2 and False with probability 1
2 to each

atom independently, what is the probability that C evaluates to True
under the chosen interpretation? Justify your answer.

(b) Let {C1, C2, . . . , Cn} be a collection of n clauses. If we choose a uniformly
random interpretation as in part (a), what is the expected number of
clauses in {C1, C2, . . . , Cn} that evaluate to True under the chosen in-
terpretation? Justify your answer.

Problem 9 [3 + 3 = 6 points]

Consider the formula (P ∧ ¬Q)⇒ (¬P ∨Q), where P and Q are atoms.

(a) Is the formula valid? Justify your answer.

(b) Is the formula satisfiable? Justify your answer.

Problem 10 [6 points]

Let G be an undirected graph, possibly with self-loops. Suppose we have the
predicate symbols Equals(·, ·), IsV ertex(·), and Edge(·, ·).

Let D be some domain that contains the set of vertices of G (D might
contain other elements as well). Let I be some interpretation that specifies
functions for Equals(·, ·), IsV ertex(·), and Edge(·, ·), so that for all u, v ∈ D,
we have Equals[I](u, v) = T (True) if and only if u = v, IsV ertex[I](u) = T
if and only if u is a vertex of G, and if u and v are both vertices of G, then
Edge[I](u, v) = T if and only if {u, v} is an edge of G (we do not know the
value of Edge[I](u, v) when u or v is not a vertex of G).

Write a formula in first order logic that captures the statement “the graph
G does not contain a triangle”, i.e., the formula is T (True) under (D, I) if
and only if the graph G does not contain a triangle (a triangle is 3 distinct
vertices all of which are connected to one another via an edge).

140 problem sets

Problem 11 [6 points]

Suppose we have an undirected graph G such that the degree of each vertex is
a multiple of 10 or 15. Show that the number of edges in G must be a multiple
of 5.

Problem 12 [3 + 2 + 5 = 10 points]

Consider the following non-deterministic finite automaton (NFA):

u v
a

z

b

w

x
a

b

y
a

b

b

a

b
b

b

a
a,b

(a) Write a regular expression that defines the language recognized by the
above NFA.

(b) Construct (by drawing a state diagram) the smallest deterministic finite
automaton (DFA) that recognizes the same language as the above NFA
(smallest in terms of the number of states).

(c) Prove that your DFA for part (b) is indeed the smallest DFA that rec-
ognizes the same language as the above NFA (smallest in terms of the
number of states).

Problem 13 [6 points]

Let S1, S2, S3, S4, . . . be an infinite sequence of countable sets. Show that⋃∞
n=1 Sn is countable. (

⋃∞
n=1 Sn is defined by

⋃∞
n=1 Sn := {x | x ∈ Sn for

some n ∈ N+}.)

Appendix B

Solutions to Problem Sets

B.1 Problem Set A

Problem 1 [6 points]

Let a0 = −1, a1 = 0, and for n ≥ 2, let an = 3an−1 − 2an−2.
Write a closed-form expression for an (for n ≥ 0), and prove using strong

induction that your expression is correct. (You must use strong induction
for this problem. Some clarification: “closed-form expression for an” simply
means an expression for an that depends only on n (and other constants)
and is not defined recursively, i.e., does not depend on an−1 or other previous
terms of the sequence.)

Solution: an = 2n − 2 for every integer n ≥ 0.

Base cases: For n = 0, we have an = a0 = −1 (by definition) and 2n − 2 =
20 − 2 = −1, so an = 2n − 2, as required. For n = 1, we have an = a1 = 0 (by
definition) and 2n − 2 = 21 − 2 = 0, so an = 2n − 2, as required.

Induction step: Let n ≥ 1, and suppose that ak = 2k − 2 for k = 0, . . . , n.
Then, an+1 = 3an − 2an−1 = 3(2n − 2)− 2(2n−1 − 2) = 3(2n)− 6− 2n + 4 =
2(2n) − 2 = 2n+1 − 2, where the second equality follows from the induction
hypothesis.

Thus, an = 2n − 2 for every integer n ≥ 0.

141

142 solutions to problem sets

Problem 2 [5 points]

Compute (38002 · 7201) mod 55. Show your work.

Solution:

Note that 55 = 5 · 11, so we have φ(55) = (4)(10) = 40. Thus, we have (38002 ·
7201) mod 55 = ((38002 mod 55)·(7201 mod 55)) mod 55 = ((38002 mod φ(55) mod
55) ·(7201 mod φ(55) mod 55)) mod 55 = ((38002 mod 40 mod 55) ·(7201 mod 40 mod
55)) mod 55 = ((32 mod 55) · (71 mod 55)) mod 55 = (9 · 7) mod 55 = 63 mod
55 = 8, where we have used Euler’s theorem in the second equality.

Problem 3 [2 + 4 = 6 points]

Let p ≥ 3 be any prime number. Let c, a ∈ {1, . . . , p − 1} such that a is a
solution to the equation x2 ≡ c (mod p), i.e., a2 ≡ c (mod p).

(a) Show that p − a is also a solution to the equation x2 ≡ c (mod p), i.e.,
(p− a)2 ≡ c (mod p).

(b) Show that a and p − a are the only solutions to the equation x2 ≡ c
(mod p) modulo p, i.e., if b ∈ Z satisfies b2 ≡ c (mod p), then b ≡ a
(mod p) or b ≡ p− a (mod p).

Solution:

(a) Observe that (p− a)2 = p2 − 2pa+ a2 ≡ a2 ≡ c (mod p).

(b) Suppose b ∈ Z satisfies b2 ≡ c (mod p). Then, b2 ≡ a2 (mod p), so
b2−a2 ≡ 0 (mod p), so (b−a)(b+a) ≡ 0 (mod p), so p | (b−a)(b+a). Since
p is prime, we must have p | (b−a) or p | (b+a). The former case implies that
b ≡ a (mod p), and the latter case implies that b ≡ −a (mod p), so b ≡ p− a
(mod p), as required.

Problem 4 [4 points]

How many solutions are there to the equation a+b+c+d = 30, if a, b, c, d ∈ N?
(N includes the number 0. You do not need to simplify your answer.)

Solution:

B.1. PROBLEM SET A 143

(
33
3

)
, since there are 4 distinguishable urns (a, b, c, and d) and 30 indistin-

guishable balls. (See the lecture notes.)

Problem 5 [2 + 2 + 4 = 8 points]

Let n be a positive even integer.

(a) How many functions f : {0, 1}n → {0, 1}n are there that do not map an
element to itself (i.e., f satisfies f(x) 6= x for all x ∈ {0, 1}n)?

(b) Given a string x ∈ {0, 1}n, let xrev denote the string in {0, 1}n obtained
from x by reversing the ordering of the bits of x (e.g., the first bit of xrev

is the last bit of x, etc.). How many strings x ∈ {0, 1}n satisfy xrev = x?
Justify your answer.

(c) How many functions f : {0, 1}n → {0, 1}n are there that satisfy f(x) 6= x
and f(x) 6= xrev for all x ∈ {0, 1}n? Justify your answer.

Solution:

(a) (2n − 1)(2n), since there are 2n elements in the domain {0, 1}n, and for
each of these elements, f can map the element to any element in {0, 1}n ex-
cept for itself, so there are 2n − 1 choices for the element.

(b) 2n/2, since to construct a string x ∈ {0, 1}n such that xrev = x, there
are 2 choices (either 0 or 1) for each of the first n/2 bits (the first half of the
n-bit string), and then the second half is fully determined by the first half.

(c) Consider constructing a function f : {0, 1}n → {0, 1}n such that f(x) 6= x
and f(x) 6= xrev for all x ∈ {0, 1}n. For each x ∈ {0, 1}n such that xrev = x,
there are 2n − 1 choices for f(x). For each x ∈ {0, 1}n such that xrev 6= x,
there are 2n− 2 choices for f(x). Since there are 2n/2 strings x ∈ {0, 1}n such
that xrev = x, and since there are 2n − 2n/2 strings x ∈ {0, 1}n such that
xrev 6= x, the number of functions f : {0, 1}n → {0, 1}n such that f(x) 6= x

and f(x) 6= xrev for all x ∈ {0, 1}n, is (2n − 1)(2n/2) · (2n − 2)(2n−2n/2).

Problem 6 [6 points]

Let n, r, k ∈ N+ such that k ≤ r ≤ n. Show that
(
n
r

)(
r
k

)
=
(
n
k

)(
n−k
r−k
)

by using a
combinatorial argument (i.e., show that both sides of the equation count the
same thing).

144 solutions to problem sets

Solution:

Suppose there are n people, and we want to choose r of them to serve on
a committee, and out of the r people on the committee, we want to choose k
of them to be responsible for task A (where task A is some task). The LHS of
the equation counts precisely the number of possible ways to do the choosing
above.

Another way to count this is the following: Out of the n people, choose
k of them to be part of the committee and the ones responsible for task A;
however, we want exactly r people to serve on the committee, so we need to
choose r−k more people out of the remaining n−k people left to choose from.
Thus, there are

(
n
k

)(
n−k
r−k
)

possible ways to do the choosing, which is the RHS.

Problem 7 [3 + 3 = 6 points]

A certain candy similar to Skittles is manufactured with the following proper-
ties: 30% of the manufactured candy pieces are sweet, while 70% of the pieces
are sour. Each candy piece is colored either red or blue (but not both). If a
candy piece is sweet, then it is colored blue with 80% probability (and colored
red with 20% probability), and if a piece is sour, then it is colored red with
80% probability. The candy pieces are mixed together randomly before they
are sold. You bought a jar containing such candy pieces.

(a) If you choose a piece at random from the jar, what is the probability that
you choose a blue piece? Show your work. (You do not need to simplify
your answer.)

(b) Given that the piece you chose is blue, what is the probability that the
piece is sour? Show your work. (You do not need to simplify your
answer.)

Solution:

Let B be the event that the piece you choose is blue, and let D be the event
that the piece you choose is sweet.

(a) Pr[B] = Pr[B | D] Pr[D] + Pr[B | D] Pr[D] = (0.80)(0.30) + (0.20)(0.70) =
0.38.

(b) Pr[D | B] = Pr[B|D] Pr[D]
Pr[B] = (0.20)(0.70)

(0.80)(0.30)+(0.20)(0.70) = 7
19 ≈ 0.368.

B.1. PROBLEM SET A 145

Problem 8 [3 + 3 = 6 points]

A literal is an atom (i.e., an atomic proposition) or the negation of an atom
(e.g., if P is an atom, then P is a literal, and so is ¬P). A clause is a formula
of the form li∨lj∨lk, where li, lj , lk are literals and no atom occurs in li∨lj∨lk
more than once (e.g., P ∨¬Q∨¬P is not allowed, since the atom P occurs in
P ∨ ¬Q ∨ ¬P more than once).

Examples: P1 ∨ ¬P2 ∨ ¬P4 is a clause, and so is P2 ∨ ¬P4 ∨ ¬P5.

(a) Let C be a clause. If we choose a uniformly random interpretation by
assigning True with probability 1

2 and False with probability 1
2 to each

atom independently, what is the probability that C evaluates to True
under the chosen interpretation? Justify your answer.

(b) Let {C1, C2, . . . , Cn} be a collection of n clauses. If we choose a uniformly
random interpretation as in part (a), what is the expected number of
clauses in {C1, C2, . . . , Cn} that evaluate to True under the chosen in-
terpretation? Justify your answer.

Solution:

(a) The probability that C evaluates to True is equal to 1 minus the prob-
ability that C evaluates to False. Now, C evaluates to False if and only
if each of the three literals in C evaluates to False. A literal in C evalu-
ates to False with probability 1

2 , and since no atom occurs in C more than
once, the probability that all three literals in C evaluate to False is (1

2)3 (by
independence). Thus, the probability that C evaluates to True is 1−(1

2)3 = 7
8 .

(b) Let Xi = 1 if clause Ci evaluates to True, and Xi = 0 otherwise. Then,
by linearity of expectation, the expected number of clauses that evaluate to
True is E[

∑n
i=1Xi] =

∑n
i=1 E[Xi] =

∑n
i=1 Pr[Xi = 1] =

∑n
i=1

7
8 = 7n

8 .

Problem 9 [3 + 3 = 6 points]

Consider the formula (P ∧ ¬Q)⇒ (¬P ∨Q), where P and Q are atoms.

(a) Is the formula valid? Justify your answer.

(b) Is the formula satisfiable? Justify your answer.

Solution:

146 solutions to problem sets

(a) No, since the interpretation that assigns True to P and False to Q would
make the formula evaluate to False, since (P ∧ ¬Q) evaluates to True while
(¬P ∨Q) evaluates to False.

(b) Yes, since any interpretation that assigns False to P would make (P ∧¬Q)
evaluate to False, and so (P ∧ ¬Q)⇒ (¬P ∨Q) would evaluate to True.

Problem 10 [6 points]

Let G be an undirected graph, possibly with self-loops. Suppose we have the
predicate symbols Equals(·, ·), IsV ertex(·), and Edge(·, ·).

Let D be some domain that contains the set of vertices of G (D might
contain other elements as well). Let I be some interpretation that specifies
functions for Equals(·, ·), IsV ertex(·), and Edge(·, ·), so that for all u, v ∈ D,
we have Equals[I](u, v) = T (True) if and only if u = v, IsV ertex[I](u) = T
if and only if u is a vertex of G, and if u and v are both vertices of G, then
Edge[I](u, v) = T if and only if {u, v} is an edge of G (we do not know the
value of Edge[I](u, v) when u or v is not a vertex of G).

Write a formula in first order logic that captures the statement “the graph
G does not contain a triangle”, i.e., the formula is T (True) under (D, I) if
and only if the graph G does not contain a triangle (a triangle is 3 distinct
vertices all of which are connected to one another via an edge).

Solution:

¬∃u∃v∃w(isV ertex(u)∧isV ertex(v)∧isV ertex(w)∧¬Equals(u, v)∧¬Equals(u,w)∧
¬Equals(v, w) ∧ Edge(u, v) ∧ Edge(u,w) ∧ Edge(v, w))

Problem 11 [6 points]

Suppose we have an undirected graph G such that the degree of each vertex is
a multiple of 10 or 15. Show that the number of edges in G must be a multiple
of 5.

Solution:

Let G = (V,E). Recall that 2|E| =
∑

v∈V deg(v). The degree of each vertex is
a multiple of 10 or 15, and thus is a multiple of 5. Thus, 2|E| =

∑
v∈V deg(v)

is a multiple of 5, since each term of the sum is a multiple of 5. Thus, 5 divides

B.1. PROBLEM SET A 147

2|E|, and since 5 is prime, 5 must divide 2 or |E|. 5 clearly does not divide 2,
so 5 divides |E|, as required.

Problem 12 [3 + 2 + 5 = 10 points]

Consider the following non-deterministic finite automaton (NFA):

u v
a

z

b

w

x
a

b

y
a

b

b

a

b
b

b

a
a,b

(a) Write a regular expression that defines the language recognized by the
above NFA.

(b) Construct (by drawing a state diagram) the smallest deterministic finite
automaton (DFA) that recognizes the same language as the above NFA
(smallest in terms of the number of states).

(c) Prove that your DFA for part (b) is indeed the smallest DFA that rec-
ognizes the same language as the above NFA (smallest in terms of the
number of states).

Solution:

(a) (ab)∗

(b)

u
va

wb

b a

a,b

148 solutions to problem sets

(c) We will show that any DFA that recognizes (ab)∗ must have at least 3
states. 1 state is clearly not enough, since a DFA with only 1 state recognizes
either the empty language or the language {a, b}∗. Now, consider any DFA
with 2 states. We note that the start state must be an accepting state, since
the empty string needs to be accepted by the DFA. Since the string a is not
accepted by the DFA, the a-transition (the arrow labeled a) out of the start
state cannot be a self-loop, so the a-transition must lead to the other state.
Similarly, since the string b is not accepted by the DFA, the b-transition out
of the start state must lead to the other state. However, this means that bb is
accepted by the DFA, since ab is accepted by the DFA and the first letter of
the string does not affect whether the string is accepted, since both a and b
result in transitioning to the non-start state. This means that the DFA does
not recognize the language defined by (ab)∗. Thus, any DFA that recognizes
(ab)∗ must have at least 3 states.

