"Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better."

- Edsger Dijkstra

go

ASYMPTOTIC COMPLEXITY

Lecture CS2110 – Summer 2019

0

9 age a

- Mark Twin

go

31

ASYMPTOTIC COMPLEXITY

Lecture CS2110 – Summer 2019

What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?

- Faster?
- Less space?
- Simpler?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?

Basic Step: one "constant time" operation

Constant time operation: its time doesn't depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:

- □ Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field ***
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)

Counting Steps

// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1){
 sum= sum + k;
}</pre>

Statement:	<u># times done</u>
sum= 0;	1
k= 1;	1
$k \leq n$	n+1
k = k + 1;	n
sum = sum + k;	n
Total steps:	3n + 3

All basic steps take time 1. There are n loop iterations. Therefore, takes time proportional to n.

Not all operations are basic steps

// Store n copies of 'c' in s	Statement:	<u># times done</u>
s= "";	s= "";	1
// inv: s contains k-1 copies of 'c'	k= 1;	1
for (int $k = 1$: $k < -n$: $k = k + 1$)	k <= n	n+1
101 (IIII K – 1, K $-$ II, K – K + 1){	k = k + 1;	n
s = s + c';	s = s + c';	<u>n</u>
}	Total steps:	3n + 3

Catenation is not a basic step. For each k, catenation creates and fills k array elements.

6

String Catenation

Basic steps executed in s = s + c';

s= s + 'c'; // Suppose length of s is k

8

- 1. Create new String object, say C basic steps.
- 2. Copy k chars from object s to the new object: k basic steps
- 3. Place char 'c' into the new object: 1 basic step.
- 4. Store pointer to new object into s: 1 basic step.

Total of (C+2) + k basic steps.

In the algorithm, s=s+ 'c'; is executed n times: s=s+ 'c'; with length of s=0 s=s+ 'c'; with length of s=1... s=s+ 'c'; with length of s=n-1Total of $n^*(C+2) + (0 + 1 + 2 + ... n-1)$ basic steps Basic steps executed in s = s + c';

9

s = s + c'; // Suppose length of s is k

In the algorithm, s=s + c'; is executed as follows: s=s + c'; with length of s = 0 s=s + c'; with length of s = 1... s=s + c'; with length of s = n-1Total of $n^{*}(C+2) + (0 + 1 + 2 + ... n-1)$ basic steps

 $0 + 1 + 2 + \dots n - 1 = n(n-1) / 2$. Gauss figured this out in the 1700's = $n^2/2 - n/2$.

mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html

Basic steps executed in s = s + c';

10

s = s + c'; // Suppose length of s is k

In the algorithm, s=s + c'; is executed as follows: s=s + c'; with length of s = 0 s=s + c'; with length of s = 1... s=s + c'; with length of s = n-1Total of $n^{*}(C+2) + (0 + 1 + 2 + ... n-1)$ basic steps

Total of $n^{*}(C+2) + n^{2}/2 - n/2$ basic steps

Total of $n^{*}(C+2) + n^{2}/2 - n/2$ basic steps. Quadratic in n.

Not all operations are basic steps

1	F		

// Store n copies of 'c' in s	Statement:	<u># times</u>	<u># steps</u>
s= "";	s= "";	1	1
// inv: s contains k-1 copies of 'c'	k= 1;	1	1
$\int \frac{1}{1} \int $	k <= n	n+1	1
for $(int K = 1; K \le n; K = K+1)$	k= k+1;	n	1
s = s + c';	s = s + c';	see to left	
}	Total steps:	•••	
Total stans:			

Total steps: 2n + 3 + $n^{*}(C+2) + n^{2}/2 - n/2$ for s= s + 'c';

Linear versus quadractic

```
// Store sum of 1..n in sum
sum= 0;
```

```
// inv: sum = sum of 1..(k-1)
```

```
for (int k= 1; k <= n; k= k+1)
```

sum = sum + n

Linear algorithm

// Store n copies of 'c' in s
s= "";
// inv: s contains k-1 copies of 'c'
for (int k= 1; k = n; k= k+1)
s= s + 'c';

Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What's important is that One is linear in n —takes time proportional to n One is quadratic in n —takes time proportional to n^2

Looking at execution speed

What do we want from a definition of "runtime complexity"?

1. Distinguish among cases for large n, not small n

2. Distinguish among important cases, like

- n*n basic operations
- n basic operations
- log n basic operations
- 5 basic operations
- 3. Don't distinguish among trivially different cases.
- •5 or 50 operations
- •n, n+2, or 4n operations

"Big O" Notation

Prove that $(2n^2 + n)$ is $O(n^2)$

16

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

Example: Prove that $(2n^2 + n)$ is $O(n^2)$

Methodology:

Start with f(n) and slowly transform into $c \cdot g(n)$:

- \Box Use = and <= and < steps
- At appropriate point, can choose N to help calculation
- At appropriate point, can choose c to help calculation

Prove that $(2n^2 + n)$ is $O(n^2)$

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

Example: Prove that $(2n^2 + n)$ is $O(n^2)$

f(n)

- = < definition of f(n) >2n² + n
- <= <for $n \ge 1$, $n \le n^2 > 2n^2 + n^2$
- = <arith>

3*n²

= < definition of g(n) = n²> 3^* g(n)

Transform f(n) into $c \cdot g(n)$:

- •Use =, <=, < steps
- •Choose N to help calc.
- •Choose c to help calc

Choose N = 1 and c = 3

Prove that $100 n + \log n$ is O(n)

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

f(n)

<put in what f(n) is>

100 n + log n

 $<= \qquad < We know log n \le n \text{ for } n \ge 1 >$

100 n + n

= <arith> 101 n Choose N = 1 and c = 101

= < g(n) = n >101 g(n)

But what's origin of complexity?

- Computing a theory of all knowledge
- Some of my own thoughts

