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“Simplicity is a great virtue but it requires hard work to 
achieve it and education to appreciate it. And to make 
matters worse: complexity sells better.”

- Edsger Dijkstra



ASYMPTOTIC COMPLEXITY
Lecture

CS2110 – Summer 2019

“I didn't have time to write a short letter, so I wrote a long 
one instead.”

- Mark Twin



What Makes a Good Algorithm?
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Suppose you have two possible algorithms that do the 
same thing; which is better?

What do we mean by better?
¤ Faster?
¤ Less space?
¤ Simpler?
¤ Easier to code?
¤ Easier to maintain?
¤ Required for homework?

FIRST, Aim for simplicity, 
ease of understanding, 
correctness. 

SECOND, Worry about 
efficiency only when it is 
needed.

How do we measure speed of an algorithm?



Basic Step: one “constant time” operation
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Basic step:
¤ Input/output of a number
¤ Access value of primitive-type variable, array element, or 

object field
¤ assign to variable, array element, or object field ***
¤ do one arithmetic or logical operation
¤ method call (not counting arg evaluation and execution of 

method body)

Constant time operation: its time doesn’t depend on the size
or length of anything. Always roughly the same. Time is 
bounded above by some number 



Counting Steps
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// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1){

sum= sum + k;
}

All basic steps take time 1.
There are n loop iterations. 
Therefore, takes time 
proportional to n.

Statement: # times done 
sum= 0; 1
k= 1; 1
k <= n n+1
k= k+1; n
sum= sum + k; n
Total steps: 3n + 3
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Statement: # times done 
s= ""; 1
k= 1; 1
k <= n n+1
k= k+1; n
s= s + 'c'; n
Total steps: 3n + 3

Not all operations are basic steps
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// Store n copies of ‘c’ in s 
s= "";
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1){

s=  s + 'c';
}

Catenation is not a basic step. 
For each k, catenation creates 
and fills k array elements. 
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s= s + “c”;    is NOT constant time.
It takes time proportional to 1 + length of s
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Basic steps executed in s= s + ‘c’;
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s=  s + 'c’;  // Suppose length of s is k

1. Create new String object, say C basic steps.
2. Copy k chars from object s to the new object: k basic steps
3. Place char ‘c’ into the new object: 1 basic step.
4. Store pointer to new object into s: 1 basic step.
Total of (C+2) + k basic steps.

In the algorithm,   s= s + ‘c’;  is executed n times:
s=  s + ‘c’;      with length of s = 0
s=  s + ‘c’;      with length of s = 1
…
s=  s + ‘c’;      with length of s = n-1

Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps



Basic steps executed in s= s + ‘c’;
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s=  s + 'c’;  // Suppose length of s is k

In the algorithm,   s= s + ‘c’;  is executed as follows:
s=  s + ‘c’;      with length of s = 0
s=  s + ‘c’;      with length of s = 1
…
s=  s + ‘c’;      with length of s = n-1

Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps

0 + 1 + 2 + … n-1 = n(n-1) / 2.  Gauss figured this out in the 1700’s
= n2/2 – n/2.

mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html

http://mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html


Basic steps executed in s= s + ‘c’;
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s=  s + 'c’;  // Suppose length of s is k

In the algorithm,   s= s + ‘c’;  is executed as follows:
s=  s + ‘c’;      with length of s = 0
s=  s + ‘c’;      with length of s = 1
…
s=  s + ‘c’;      with length of s = n-1

Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps

Total of n*(C+2) + n2/2 – n/2 basic steps

Total of n*(C+2) + n2/2 – n/2 basic steps. Quadratic in n.



Not all operations are basic steps
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// Store n copies of ‘c’ in s 
s= "";
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1){

s=  s + 'c';
}

Statement: # times # steps 
s= ""; 1 1 
k= 1; 1 1
k <= n n+1 1
k= k+1; n 1
s= s + 'c’; see to left
Total steps: …
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for s= s + ‘c’;



Linear versus quadractic
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// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1)

sum= sum + n

// Store n copies of ‘c’ in s 
s= “”;
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k = n; k= k+1)

s=  s + ‘c’;

In comparing the runtimes of these algorithms, the exact number 
of basic steps is not important. What’s important is that

One is linear in n —takes time proportional to n
One is quadratic in n —takes time proportional to n2

Linear algorithm Quadratic algorithm



Looking at execution speed
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size n of the array0  1  2  3  …

Number of 
operations 
executed

Constant time

n ops

n + 2 ops

2n + 2 ops
n*n ops

2n+2, n+2, n are all linear in n, 
proportional to n



What do we want from a 
definition of “runtime complexity”?
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size n of problem0  1  2  3  …

Number of 
operations 
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases 
for large n, not small n

2. Distinguish among 
important cases, like
• n*n basic operations
• n basic operations
• log n basic operations
• 5 basic operations

3. Don’t distinguish among 
trivially different cases.
•5 or 50 operations
•n, n+2, or 4n operations



"Big O" Notation
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Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n)

c·g(n)

f(n)

N

Get out far enough 
(for n ≥ N)
f(n) is at most c·g(n)

Intuitively, f(n) is O(g(n))
means that f(n) grows
like g(n) or slower



Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

Methodology:

Start with f(n) and slowly transform into c · g(n):
¨ Use  =   and  <=  and  <  steps
¨ At appropriate point, can choose N to help calculation
¨ At appropriate point, can choose c to help calculation
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Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n)



Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)
f(n)

=         <definition of f(n)>
2n2 + n

<=       <for n ≥ 1,  n ≤ n2>
2n2 + n2

=          <arith>
3*n2

=           <definition of g(n) = n2>
3*g(n)
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Choose
N = 1 and c = 3

Transform f(n) into c·g(n):
•Use  =, <= , <  steps
•Choose N to help calc.
•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n)



Prove that 100 n + log n   is   O(n)
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f(n)
=         <put in what f(n) is>

100 n  +   log n

<=        <We know log n ≤ n for n ≥ 1>

100 n + n

=         <arith>
101 n

=         <g(n) = n>
101 g(n)

Choose
N = 1 and c = 101

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n)



But what’s origin of complexity?
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¨ Computing a 
theory of all 
knowledge

¨ Some of my 
own thoughts


