

What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?
\square Faster?
\square Less space?
\square Simpler?

- Easier to code?
\square Easier to maintain?
\square Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?

Basic Step: one "constant time" operation

Constant time operation: its time doesn't depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:

\square Input/output of a number

- Access value of primitive-type variable, array element, or object field
\square assign to variable, array element, or object field ${ }^{* * *}$
\square do one arithmetic or logical operation
\square method call (not counting arg evaluation and execution of method body)

Counting Steps

$$
\begin{aligned}
& \text { // Store sum of } 1 . . \mathrm{n} \text { in sum } \\
& \text { sum= } 0 ; \\
& \text { // inv: } \operatorname{sum}=\text { sum of } 1 . .(\mathrm{k}-1) \\
& \text { for }(\operatorname{int} \mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1)\{ \\
& \quad \text { sum }=\operatorname{sum}+\mathrm{k} ;
\end{aligned}
$$

$$
\}
$$

All basic steps take time 1 .
There are n loop iterations.
Therefore, takes time
proportional to n .

$$
\begin{array}{ll}
\text { Statement: } & \text { \# times done } \\
=0 ; & 1 \\
\mathrm{k}=1 ; & 1 \\
\mathrm{k}<=\mathrm{n} & \mathrm{n}+1 \\
\mathrm{k}=\mathrm{k}+1 ; & \mathrm{n} \\
\text { sum }=\text { sum }+\mathrm{k} ; & \mathrm{n} \\
\hline \text { Total steps: } & \\
3 \mathrm{n}+3
\end{array}
$$350

50

50
00
50

Linear algorithm in n

00

Not all operations are basic steps

// Store n copies of ' c ' in s
s= "";
// inv: s contains $\mathrm{k}-1$ copies of ' c ' for (int $\mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1$) $\{$

$$
\mathrm{s}=\mathrm{s}+\mathrm{c}^{\prime} \text { '; }
$$

\}

Catenation is not a basic step. For each k, catenation creates and fills k array elements.

$$
\begin{array}{ll}
\text { Statement: } & \text { \# times c } \\
\mathrm{s}=\mathrm{ln} ; & 1 \\
\mathrm{k}=1 ; & 1 \\
\mathrm{k}<=\mathrm{n} & \mathrm{n}+1 \\
\mathrm{k}=\mathrm{k}+1 ; & \mathrm{n} \\
\mathrm{~s}=\mathrm{s}+\mathrm{I}^{\prime} \mathrm{c} ; & \\
\hline \text { Total steps: } & \\
3 \mathrm{n}+3
\end{array}
$$

String Catenation

$\mathrm{s}=\mathrm{s}+$ " c "; is NOT constant time.
It takes time proportional to $1+$ length of s

Basic steps executed in $s=s+$ ' c ';

$\mathrm{s}=\mathrm{s}+\mathrm{c}$ '; // Suppose length of s is k

1. Create new String object, say C basic steps.
2. Copy k chars from object s to the new object: k basic steps
3. Place char 'c' into the new object: 1 basic step.
4. Store pointer to new object into s: 1 basic step.

Total of $(\mathrm{C}+2)+\mathrm{k}$ basic steps.
In the algorithm, $\mathrm{s}=\mathrm{s}+{ }^{\prime} \mathrm{c}$ '; is executed n times:
$\mathrm{s}=\mathrm{s}+{ }^{\text {' }} \mathrm{c}$ '; \quad with length of $\mathrm{s}=0$
$s=s+{ }^{\prime} c$ '; with length of $s=1$
$\mathrm{s}=\mathrm{s}+{ }^{\text {' }} \mathrm{c}$ '; \quad with length of $\mathrm{s}=\mathrm{n}-1$
Total of $\mathrm{n}^{*}(\mathrm{C}+2)+(0+1+2+\ldots \mathrm{n}-1)$ basic steps

Basic steps executed in $s=s+$ ' c ';

$\mathrm{s}=\mathrm{s}+\mathrm{c}$ '; // Suppose length of s is k
In the algorithm, $\mathrm{s}=\mathrm{s}+{ }^{\prime} \mathrm{c}$ '; is executed as follows:
$s=s+{ }^{'} c^{\prime} ; \quad$ with length of $s=0$
$s=s+{ }^{\prime} c$ '; with length of $s=1$
$\mathrm{s}=\mathrm{s}+{ }^{\text {' } \mathrm{c}}$ '; with length of $\mathrm{s}=\mathrm{n}-1$
Total of $n^{*}(C+2)+(0+1+2+\ldots n-1)$ basic steps
$0+1+2+\ldots \mathrm{n}-1=\mathrm{n}(\mathrm{n}-1) / 2$. Gauss figured this out in the 1700 's

$$
=\mathrm{n}^{2} / 2-\mathrm{n} / 2 .
$$

mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html

Basic steps executed in $s=s+$ ' c ';

$\mathrm{s}=\mathrm{s}+\mathrm{c}$ '; // Suppose length of s is k
In the algorithm, $\mathrm{s}=\mathrm{s}+{ }^{\prime} \mathrm{c}$ '; is executed as follows:
$s=s+{ }^{\prime} c^{\prime} ; \quad$ with length of $s=0$
$s=s+{ }^{\prime} c$ '; with length of $s=1$
$\mathrm{s}=\mathrm{s}+{ }^{\text {' }} \mathrm{c}$ '; \quad with length of $\mathrm{s}=\mathrm{n}-1$
Total of $n *(C+2)+(0+1+2+\ldots n-1)$ basic steps
Total of $n *(C+2)+n^{2} / 2-n / 2$ basic steps

Total of $n^{*}(C+2)+\mathbf{n}^{\mathbf{2}} / 2-n / 2$ basic steps. Quadratic in n.

Not all operations are basic steps

// Store n copies of ' c ' in s
s= "";
// inv: s contains $\mathrm{k}-1$ copies of ' c '
for (int $\mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1$) $\{$
s= s + 'c';
\}
Total steps:
$2 \mathrm{n}+3+$
$\mathrm{n} *(\mathrm{C}+2)+\mathbf{n}^{2} / 2-\mathrm{n} / 2$
for $\mathrm{s}=\mathrm{s}+\mathrm{c}$ ';

Statement:	\# times	\# steps
s= "";	1	1
$\mathrm{k}=1$;	1	1
$\mathrm{k}<=\mathrm{n}$	$\mathrm{n}+1$	1
$\mathrm{k}=\mathrm{k}+1$;	n	1
$\mathrm{s}=\mathrm{s}+\mathrm{c}$ ';	see to left	
Total steps:	..	

Linear versus quadractic

// Store sum of 1..n in sum
sum $=0$;
// inv: sum = sum of 1..(k-1)
for (int $\mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1$)

$$
\operatorname{sum}=\operatorname{sum}+n
$$

Linear algorithm
// Store n copies of ' c ' in s
s="";
// inv: s contains k -1 copies of ' c '
for (int $\mathrm{k}=1 ; \mathrm{k}=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1$)

$$
\mathrm{s}=\mathrm{s}+\quad \mathrm{c} \text { '; }
$$

Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What's important is that

One is linear in n-takes time proportional to n
One is quadratic in $n-$ takes time proportional to n^{2}

Looking at execution speed

Number of operations executed
$2 \mathrm{n}+2, \mathrm{n}+2, \mathrm{n}$ are all linear in n , proportional to n

$$
\begin{aligned}
& 2 n+2 \text { ops } \\
& n+2 \text { ops } \\
& n \text { ops }
\end{aligned}
$$

Constant time
size n of the array

What do we want from a definition of "runtime complexity"?

1. Distinguish among cases for large n , not small n

Number of operations executed
2. Distinguish among important cases, like

- $n * n$ basic operations
- n basic operations
- $\log \mathrm{n}$ basic operations
- 5 basic operations

3. Don't distinguish among trivially different cases.

- 5 or 50 operations
$\cdot \mathrm{n}, \mathrm{n}+2$, or 4 n operations

"Big O" Notation

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$

Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$

Example: Prove that $\left(2 n^{2}+n\right)$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Methodology:

Start with $\mathrm{f}(\mathrm{n})$ and slowly transform into $\mathrm{c} \cdot \mathrm{g}(\mathrm{n})$:
$\square \quad$ Use $=$ and $<=$ and $<$ steps
\square At appropriate point, can choose N to help calculation
\square At appropriate point, can choose c to help calculation

Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$

Example: Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

$$
\begin{array}{cc}
& f(n) \\
= & <\text { definition of } f(n)> \\
& 2 n^{2}+n \\
& <\text { for } n \geq 1, n \leq n^{2}> \\
& 2 n^{2}+n^{2} \\
<\text { arith }> \\
& 3 * n^{2} \\
= & <\text { definition of } g(n)=n^{2}> \\
& 3^{*} g(n)
\end{array}
$$

Transform $f(n)$ into $c \cdot g(n)$: - Use $=,<=$, $<$ steps -Choose N to help calc. - Choose c to help calc

Prove that $100 n+\log n$ is $O(n)$

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$
$f(n)$
$=\quad<$ put in what $\mathrm{f}(\mathrm{n})$ is>
$100 n+\log n$
$<=\quad<$ We know $\log \mathrm{n} \leq \mathrm{n}$ for $\mathrm{n} \geq 1>$
$100 \mathrm{n}+\mathrm{n}$
$=\quad$ <arith $>$
101 n
$=\quad<\mathrm{g}(\mathrm{n})=\mathrm{n}>$
$101 \mathrm{~g}(\mathrm{n})$

But what's origin of complexity?

\square Computing a theory of all knowledge
\square Some of my own thoughts

