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What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the
same thing; which is better?

What do we mean by better? FIRST, Aim for simplicity,

Faster? ease of understanding,
Less space? correctness.

Simpler?

Easier to code? SECOND, Worry about
Easier to maintain? efficiency only when it is
Required for homework? needed.

How do we measure speed of an algorithm?



Basic Step: one “constant time” operation

Constant time operation: its time doesn’t depend on the size
or length of anything. Always roughly the same. Time 1s
bounded above by some number

Basic step:
Input/output of a number

Access value of primitive-type variable, array element, or
object field

assign to variable, array element, or object field ***
do one arithmetic or logical operation

method call (not counting arg evaluation and execution of
method body)



Counting Steps
ST

// Store sum of 1..n in sum Statement: # times done
sum= 0; sum= 0; 1
// inv: sum = sum of 1..(k-1) k=1; 1
: k<=n n+1
for (intk=I; k<=n; k=k+1){ |- 141 N
sum= sum + k; sum= sum + k; n
} Total steps: 3n+3
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Not all operations are basic steps

// Store n copies of ‘c’in s

— nn,

S— 9

// inv: s contains k-1 copies of ‘¢’
for (int k= 1; k <=n; k=k+1){
s= s+'c’

Statement:
s="";
k=1;
k<=n

k= k+1;

s=s+'c';

Total steps:

# times done
1

|
n+1
n
n

3n+3




String Catenation

s=s+ “c”; 1s NOT constant time.
It takes time proportional to 1 + length of s
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Basic steps executed in s= s + ‘c’;

s= s+'c’; // Suppose length of s1s k

1. Create new String object, say C basic steps.

2. Copy k chars from object s to the new object: k basic steps
3. Place char ‘c’ into the new object: 1 basic step.

4. Store pointer to new object into s: 1 basic step.

Total of (C+2) + k basic steps.

In the algorithm, s=s+ ‘c’; 1s executed n times:
s= s+ ‘c’;  withlength of s=0
s= s+ °‘c’;  withlength of s =1

s= s+ °‘c’;  with length of s =n-1
Total of n*(C+2)+(0+ 1+ 2+ ... n-1) basic steps




Basic steps executed in s= s + ‘c’;

s= s+'c’; // Suppose length of s1s k

In the algorithm, s=s+ ‘c’; 1s executed as follows:
s= s+ ‘c’;  withlengthofs=0
s= s+ °‘c’;  withlengthof s=1

s= s+ °‘c’;  with length of s =n-1
Total of n*(C+2)+(0+ 1+ 2+ ... n-1) basic steps

O0+1+2+...n-1=n(n-1)/2. Gauss figured this out in the 1700’s
= n%/2 —n/2.



http://mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html

Basic steps executed in s= s + ‘c’;

s= s+'c’; // Suppose length of s1s k

In the algorithm, s=s+ ‘c’; 1s executed as follows:
s= s+ ‘c’;  withlengthofs=0
s= s+ °‘c’;  withlengthof s=1

s= s+ °‘c’;  with length of s =n-1
Total of n*(C+2)+(0+ 1+ 2+ ... n-1) basic steps

Total of n*(C+2) + n%/2 — /2 basic steps

Total of n*(C+2) + n%/2 — n/2 basic steps. Quadratic 1n n.




Not all operations are basic steps

// Store n copies of ‘c’in s Statement:  # times # steps
g=""- S= ""; | 1
// inv: s contains k-1 copies of ‘c’ k=1, 1 1
: k<=n n+1 1
for (intk= 1k <=n;k=k+t1){ | _ k+1: N |
s= s+'c; s=s+'c’; see to left
} Total steps:

Total steps:

350
2n +3 + 300 _
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Linear versus quadractic

..

// Store sum of 1..n in sum // Store n copies of ‘c’in s

sum= 0; s= "

// inv: sum = sum of 1..(k-1) // inv: s contains k-1 copies of ‘c’

for (int k= 1; k <=n; k= k+1) for (int k= 1; k =n; k=k+1)
sum= sum + n s= s+ ‘c’;




Looking at execution speed

Number of 2n+2, n+2, n are all linear in n,
operations proportional to n rd
executed 2n +2 ops

n*n ops

Constant time

0123 ...

size n of the array



What do we want from a
definition of “runtime complexity”?

1. Distinguish among cases
for large n, not small n

Number of
operations 2. Distinguish among
executed important cases, like

* . 1
n"1n ops * n*n basic operations

* n basic operations
* log n basic operations
24nops « 5 Dbasic operations

3. Don’t distinguish among
trivially different cases.

1 2 3 ... sizen of problem *5 or 50 operations
*n, n+2, or 4n operations

5 ops




"Big O" Notation
N

Formal definition: f(n) 1s O(g(n)) if there exist constants ¢ > 0
and N > 0 such that for alln > N, f(n) <c-g(n)

c-g(n




Prove that (2n? + n) is O(n?)

Formal definition: f(n) 1s O(g(n)) if there exist constants ¢ > 0
and N > 0 such that foralln >N, f(n)<c-g(n)

Example: Prove that (2n? + n) is O(n?)

Methodology:

Start with f(n) and slowly transform into c - g(n):
] Use = and <= and < steps
[0 At appropriate point, can choose N to help calculation

[0 At appropriate point, can choose ¢ to help calculation



Prove that (2n? + n) is O(n?)

Formal definition: f(n) 1s O(g(n)) if there exist constants ¢ > 0
and N > 0 such that foralln >N, f(n)<c-g(n)

Example: Prove that (2n? + n) is O(n?)

f(n) Transform f(n) into c-g(n):
= <definition of f(n)> ‘Use =, <=, < steps
2n? + n *Choose N to help calc.
<= <forn=1, n<n?*> *Choose ¢ to help calc
2n? + n?
— <arith>
3%n? Choose
= <definition of g(n) = n*> N=1landc=3

3*g(n)



Prove that 100 n + logn is O(n)

Formal definition: f(n) 1s O(g(n)) if there exist constants ¢ > 0
and N > 0 such that foralln >N, f(n)<c-g(n)

f(n)
= <put in what f(n) is>
100n + logn

<= <We know logn<nforn> 1>
100n +n

B it Choose

- arit N=1andc=101
101 n

= <g(n) = n>




But what’s origin of complexity?

7 Computing a
theory of all
knowledge

7 Some of my
own thoughts




