
ASYMPTOTIC COMPLEXITY
Lecture

CS2110 – Summer 2019

“Simplicity is a great virtue but it requires hard work to
achieve it and education to appreciate it. And to make
matters worse: complexity sells better.”

- Edsger Dijkstra

ASYMPTOTIC COMPLEXITY
Lecture

CS2110 – Summer 2019

“I didn't have time to write a short letter, so I wrote a long
one instead.”

- Mark Twin

What Makes a Good Algorithm?
3

Suppose you have two possible algorithms that do the
same thing; which is better?

What do we mean by better?
¤ Faster?
¤ Less space?
¤ Simpler?
¤ Easier to code?
¤ Easier to maintain?
¤ Required for homework?

FIRST, Aim for simplicity,
ease of understanding,
correctness.

SECOND, Worry about
efficiency only when it is
needed.

How do we measure speed of an algorithm?

Basic Step: one “constant time” operation
4

Basic step:
¤ Input/output of a number
¤ Access value of primitive-type variable, array element, or

object field
¤ assign to variable, array element, or object field ***
¤ do one arithmetic or logical operation
¤ method call (not counting arg evaluation and execution of

method body)

Constant time operation: its time doesn’t depend on the size
or length of anything. Always roughly the same. Time is
bounded above by some number

Counting Steps
5

// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1){

sum= sum + k;
}

All basic steps take time 1.
There are n loop iterations.
Therefore, takes time
proportional to n.

Statement: # times done
sum= 0; 1
k= 1; 1
k <= n n+1
k= k+1; n
sum= sum + k; n
Total steps: 3n + 3

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Linear algorithm in n

Statement: # times done
s= ""; 1
k= 1; 1
k <= n n+1
k= k+1; n
s= s + 'c'; n
Total steps: 3n + 3

Not all operations are basic steps
6

// Store n copies of ‘c’ in s
s= "";
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1){

s= s + 'c';
}

Catenation is not a basic step.
For each k, catenation creates
and fills k array elements.

String@00
Stringb

char[]

char[]@02
char[]0 ‘d’

String Catenation
7

s= s + “c”; is NOT constant time.
It takes time proportional to 1 + length of s

s

1 ‘x’

String@90
Stringb

char[]

char[]@018
char[]0 ‘d’

1 ‘x’
2 ‘c’

Basic steps executed in s= s + ‘c’;
8

s= s + 'c’; // Suppose length of s is k

1. Create new String object, say C basic steps.
2. Copy k chars from object s to the new object: k basic steps
3. Place char ‘c’ into the new object: 1 basic step.
4. Store pointer to new object into s: 1 basic step.
Total of (C+2) + k basic steps.

In the algorithm, s= s + ‘c’; is executed n times:
s= s + ‘c’; with length of s = 0
s= s + ‘c’; with length of s = 1
…
s= s + ‘c’; with length of s = n-1

Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps

Basic steps executed in s= s + ‘c’;
9

s= s + 'c’; // Suppose length of s is k

In the algorithm, s= s + ‘c’; is executed as follows:
s= s + ‘c’; with length of s = 0
s= s + ‘c’; with length of s = 1
…
s= s + ‘c’; with length of s = n-1

Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps

0 + 1 + 2 + … n-1 = n(n-1) / 2. Gauss figured this out in the 1700’s
= n2/2 – n/2.

mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html

http://mathcentral.uregina.ca/qq/database/qq.02.06/jo1.html

Basic steps executed in s= s + ‘c’;
10

s= s + 'c’; // Suppose length of s is k

In the algorithm, s= s + ‘c’; is executed as follows:
s= s + ‘c’; with length of s = 0
s= s + ‘c’; with length of s = 1
…
s= s + ‘c’; with length of s = n-1

Total of n*(C+2) + (0 + 1 + 2 + … n-1) basic steps

Total of n*(C+2) + n2/2 – n/2 basic steps

Total of n*(C+2) + n2/2 – n/2 basic steps. Quadratic in n.

Not all operations are basic steps
11

// Store n copies of ‘c’ in s
s= "";
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1){

s= s + 'c';
}

Statement: # times # steps
s= ""; 1 1
k= 1; 1 1
k <= n n+1 1
k= k+1; n 1
s= s + 'c’; see to left
Total steps: …

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Quadratic algorithm in n
Total steps:
2n + 3 +
n*(C+2) + n2/2 – n/2

for s= s + ‘c’;

Linear versus quadractic
12

// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1)

sum= sum + n

// Store n copies of ‘c’ in s
s= “”;
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k = n; k= k+1)

s= s + ‘c’;

In comparing the runtimes of these algorithms, the exact number
of basic steps is not important. What’s important is that

One is linear in n —takes time proportional to n
One is quadratic in n —takes time proportional to n2

Linear algorithm Quadratic algorithm

Looking at execution speed
13

size n of the array0 1 2 3 …

Number of
operations
executed

Constant time

n ops

n + 2 ops

2n + 2 ops
n*n ops

2n+2, n+2, n are all linear in n,
proportional to n

What do we want from a
definition of “runtime complexity”?

14

size n of problem0 1 2 3 …

Number of
operations
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases
for large n, not small n

2. Distinguish among
important cases, like
• n*n basic operations
• n basic operations
• log n basic operations
• 5 basic operations

3. Don’t distinguish among
trivially different cases.
•5 or 50 operations
•n, n+2, or 4n operations

"Big O" Notation
15

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

c·g(n)

f(n)

N

Get out far enough
(for n ≥ N)
f(n) is at most c·g(n)

Intuitively, f(n) is O(g(n))
means that f(n) grows
like g(n) or slower

Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

Methodology:

Start with f(n) and slowly transform into c · g(n):
¨ Use = and <= and < steps
¨ At appropriate point, can choose N to help calculation
¨ At appropriate point, can choose c to help calculation

16

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)
f(n)

= <definition of f(n)>
2n2 + n

<= <for n ≥ 1, n ≤ n2>
2n2 + n2

= <arith>
3*n2

= <definition of g(n) = n2>
3*g(n)

17

Choose
N = 1 and c = 3

Transform f(n) into c·g(n):
•Use =, <= , < steps
•Choose N to help calc.
•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

Prove that 100 n + log n is O(n)

18

f(n)
= <put in what f(n) is>

100 n + log n

<= <We know log n ≤ n for n ≥ 1>

100 n + n

= <arith>
101 n

= <g(n) = n>
101 g(n)

Choose
N = 1 and c = 101

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

But what’s origin of complexity?
19

¨ Computing a
theory of all
knowledge

¨ Some of my
own thoughts

