TREES, PART 2

Announcements

The regrading period has opened for
Assignment 1.

Deadline: Saturday, July 13th at 5PM

JavaHyperText topics

o Tree traversals (preorder, inorder, postorder)

O http: //www.cs.cornell.edu/courses /JavaAndDS /files /tr
eebBTreeTraversal.pdf

1 Stack machines

O http: //www.cs.cornell.edu /courses/JavaAndDS /explain
Java/03methodCalls.html

Trees, re-implemented

Last time: lots of null comparisons to handle
empty trees

A more OO design:

Interface to represent operations on trees

Classes to represent behavior of empty vs. non-empty
trees

lterate through data structure

process elements of data structure

Sum all elements

Print each element

Array
2111310

Linked List

DaOmOn©

Binary Tree (:)

Forwards: 2, 1, 3,0
Backwards: O, 3, 1, 2

Forwards: 2, 1, 3, O

22?

lterate through data structure

Discuss: What would a reasonable order be?

Tree Traversals

Tree traversals
lterating through tree is aka

Well-known recursive tree traversal algorithms:
Preorder
Inorder

Postorder

Another, non-recursive: level order
(later in semester)

Preorder

“Pre:” process root before subtrees

left right
subtree subtree

Inorder

“In:” process root in-between subtrees

left right
subtree subtree

Postorder

“Post:” process root after subtrees

left right
subtree subtree

Poll

Which traversal would print out this BST 1n ascending order?

SRSNCERS

13 |Example: Syntax Trees

Syntax Trees

Trees can represent (Java) expressions
Expression: 2 * 1 — (1 + 0)
Tree:
*\/ \ +
/ s
2 1 17 No

Traversals of expression tree

Preorder traversal

1. Visit the root

2. Visit the left subtree
3. Visit the right subtree

Traversals of expression tree

Preorder traversal

Postorder traversal

1. Visit the left subtree
2. Visit the right subtree
3. Visit the root

Traversals of expression tree

Preorder traversal -*21+4+10

Postorder traversal 21*10+ -
Inorder traversal 2*1-1+0
1. Visit the left subtree

2. Visit the root

3. Visit the right subtree

Traversals of expression tree

Preorder traversal

Postorder traversal

Original expression,
except for parens

Prefix notation

Function calls in most programming languages use
: e.g., add (37, 5).

Aka (PN) in honor of inventor, Polish
logician Jan tukasiewicz

Some languages (Lisp, Scheme, Racket) use prefix
notation for everything to make the syntax uniform.

(- (*21) (+109))

(define (fib n)
(if (<= n 2)
1
(+ (fib (- n 1) (fib (- n 2)))))

Postfix notation

- Some languages (Forth, PostScript, HP calculators)

use postfix notation

o Aka reverse Polish notation (RPN)

2 1 mul 1 © add sub

/fib { dup
3 1t
{ pop 1}
{ dup 1 sub fib exch 2 sub fib add }
ifelse
} def

21 |Back to Trees

Recover tree from traversal

Suppose inorder is B C A E D.
Can we recover the tree uniquely?

Discuss.

Recover tree from traversal

Suppose inorder is B C A E D.

Can we recover the tree uniquely2 No!

Recover tree from traversals

Suppose inorder is BCAED
preorder is ABCDE

Can we determine the tree uniquely?

Recover tree from traversals

Suppose inorder is BCAED
preorder is ABCDE

Can we determine the tree uniquely? Yes!

What is root? Preorder tells us: A

What comes before /after root A2 Inorder tells us:
Before: B C
After: ED

Now | Figure out left/right subtrees using
same technique.

Recover tree from traversals

Suppose inorderis BCAED
preorderis ABCDE
How can we determine the tree uniquely?

Discuss.

Recover tree from traversals

Suppose inorder is

preorder is

BCAED
ABCDE

Root is A; left subtree contains B C; right contains E D

Left:

Inorder is BC

Preorder is BC

* What is root?¢ Preorder: B

* What is before/after B2 Inorder:

* Before: nothing
o After: C

Right:

Inorder is ED

Preorder is DE

* What is root? Preorder: D

* What is before/after D2 Inorder:
* Before: E
* After: nothing

Recover tree from traversals

Suppose inorder is BCAED
preorder is ABCDE

Tree is

A
B/ \D
AN /

C E

