TREES

Lecture 11
CS2110 - Summer 2019

Announcements

- Confusion about submission due dates/times can be cleared by reading the syllabus
(https://courses.cs.cornell.edu/cs2110/2019su/syll abus.html).
- Remember to make groups before submission deadline.
- Grades have been released for Assignment 1 and Discussions 1-3. Please submit (private) questions about either of these on Piazza.

Today's Topics in JavaHyperText

\square Search for "trees"
\square Read PDFs for points 0 through 5: intro to trees, examples of trees, binary trees, binary search trees, balanced trees

Data Structures

\square Data structure
\square Organization or format for storing or managing data
\square Concrete realization of an abstract data type
\square Operations
\square Always a tradeoff: some operations more efficient, some less, for any data structure
\square Choose efficient data structure for operations of concern

Example Data Structures

Data Structure	add(val v)	get(int i)	contains(val v)
$\begin{aligned} & \text { Array } \\ & \begin{array}{\|l\|l\|l\|l\|} \hline 2 & 1 & 3 & 0 \\ \hline \end{array} \end{aligned}$	$O(n)$	$O(1)$	$O(n)$
Linked List $\text { (2) } \rightarrow \text { (1) } \rightarrow \text { (3) } \rightarrow \text { (0) }$	$O(1)$	$O(n)$	$O(n)$

add(v): append v
get(i): return element at position i contains(v): return true if contains v

Tree

Singly linked list:

pointer

Today: trees!

Trees

In CS, we draw trees "upside down"

Tree Overview

Tree: data structure with nodes, similar to linked list
\square Each node may have zero or more successors (children)
\square Each node has exactly one predecessor (parent) except the root, which has none
\square All nodes are reachable from root

A tree or not a tree?

A tree

Not a tree

Not a tree

A tree

Tree Terminology (1)

the root of the tree
(no parents)
child of M

the leaves of the tree (no children)

Tree Terminology (2)

Tree Terminology (3)

subtree of M

Tree Terminology (4)

A node's depth is the length of the path to the root.
A tree's (or subtree's) height is the length of the longest path from the root to a leaf.

Tree Terminology (5)

Multiple trees: a forest

General vs. Binary Trees

General tree: every node can have an arbitrary number of children

General tree

Binary tree: at most two children, called left and right

...often "tree" means binary tree

Binary trees were in A1!

You have seen a binary tree in A1.
A PhD object has one or two advisors.
(Note: the advisors are the "children".)

David Gries

Special kinds of binary trees

Height 2,

Max \# of nodes at depth d: $2^{\text {d }}$

If height of tree is h :
min \# of nodes: h + 1
max \#of nodes: (Perfect tree)

$$
2^{0}+\ldots+2^{h}=2^{h+1}-1
$$

Complete binary tree Every level, except last, is completely filled, nodes on bottom level as far left as possible. No holes.

Trees are recursive

Trees are recursive

Trees are recursive

Trees are recursive

Binary
Tree

Left subtree, which is also a binary tree

Trees are recursive

A binary tree is either null
or an object consisting of a value, a left binary tree, and a right binary tree.

A Recipe for Recursive Functions

Base case:
If the input is "easy," just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

A Recipe for Recursive Functions on Binary Trees

Base case: an empty tree (null), or possibly a leaf

If the input is "rav" just solve the problem directly.

Recursive case:
Get a smatre pat of tic imput (or sereal parts).
Call the function on the maller value(s) each subtree
Use the recursive result to build a solution for the full input.

Comparing Searches

Data Stiucture	add(val v)	get(int i)	contains(val v)
$\begin{aligned} & \text { Array } \\ & \hline \begin{array}{l\|l\|l\|} \hline 2 & 1 & 3 \end{array} \\ & \hline \end{aligned}$	$O(n)$	$O(1)$	$O(n)$
Linked List $(2) \rightarrow(1) \rightarrow(3) \rightarrow(0)$	$O(1)$	$O(n)$	$O(n)$
Binary Tree $\text { (1) }{ }^{\text {ee }}$			

Node could be anywhere in tree

Binary Search Tree (BST)

A binary search tree is a binary tree with a class invariant:

- All nodes in the left subtree have values that are less than the value in that node, and
- All values in the right subtree are greater.
(assume no duplicates)

Binary Search Tree (BST)

Contains:
\square Binary tree: two recursive calls: O(n)
\square BST: one recursive call: O(height)

BST Insert

To insert a value:
\square Search for value
-If not found, put in tree where search ends

Example: Insert month names in chronological order as Strings, (Jan, Feb...). BST orders Strings alphabetically (Feb comes before Jan, etc.)

BST Insert

insert: January

BST Insert

insert: February
January

BST Insert

insert: March

BST Insert

insert: April...

BST Insert

Comparing Data Structures

Data Stiucture	add(val x)	get(int i)	contains(val x)
$\begin{aligned} & \text { Array } \\ & \begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 2 & 1 & \end{array} \end{aligned}$	$O(n)$	$O(1)$	$O(n)$
Linked List $(2) \rightarrow(1) \rightarrow(3) \rightarrow \text { (0) }$	$O(1)$	$O(n)$	$O(n)$
Binary Tree $\text { (2) }{ }^{1}$			$O(n)$
BST	O(height		O(height)

How big could height be?

Worst case height

Insert in alphabetical order...
April

Worst case height

Insert in alphabetical order...
April

August

Worst case height

Insert in alphabetical order...

Tree degenerates to list!

Need Balance

\square Takeaway: BST search is $\mathrm{O}(\mathrm{n})$ time
\square Recall, big \bigcirc notation is for worst case running time
\square Worst case for BST is data inserted in sorted order
\square Balanced binary tree: subtrees of any node are about the same height
\square In balanced BST, search is $O(\log n)$
\square Deletion: tricky! Have to maintain balance

- [Optional] See JavaHyperText "Extensions to BSTs"
- Also see CS 3110

