CS100J October 21, 2003

For Loops Reading: Secs 7.5-7.6

Q1, Q2, and A2 are in the Carpenter basement, to be picked up when a consultant is there.

Quote for the Day:

Perhaps the most valuable result of all education is the ability to make yourself do the thing you have to do, when it ought to be done, whether you like it or not; it is the first lesson that ought to be
learned; and however early a man's training begins, it is probably the last lesson that he learns thoroughly.

Thomas Henry Huxley
1825-1895
Technical Education, 1877

The for-loop

$$
/ /\{\mathrm{n}>=0\}
$$

$$
\text { int } \mathrm{k}=1
$$

$$
x=0
$$

$$
/ / \text { inv: } x=\text { sum of } 1 . .(k-1)
$$

$$
\text { while }(k!=20)\{
$$

$$
x=x+k
$$

$$
\mathrm{k}=\mathrm{k}+1
$$

$$
\}
$$

$$
/ / x=\text { sum of } 1 . .19
$$

The for loop
// $\{\mathrm{n}>=0\}$
int $\mathrm{k}=1$;
$\mathrm{x}=0$;
// inv: $\mathrm{x}=$ sum of $1 . .(\mathrm{k}-1)$
while (k != 20) \{
$\mathrm{x}=\mathrm{x}+\mathrm{k} ;$
$\mathrm{k}=\mathrm{k}+1$;
\}
$/ / \mathrm{x}=$ sum of $1 . .19$
// $\{\mathrm{n}>=0\}$
$\mathrm{x}=0$;
// inv: $\mathrm{x}=$ sum of $1 . .(\mathrm{k}-1)$
$\mathrm{x}=\mathrm{x}+\mathrm{k} ;$
\}
$/ / \mathrm{x}=$ sum of $1 . .19$
k is a loop counter. Initialized
before the loop and changed only
in the last statement of the repetend
of the while-loop

Syntax and semantics of the for loop

for (initialization ; condition ; progress) \{
repetend
\}
meaning of for-loop:
initialization
while (condition) \{
repetend
progress
\}

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& / / \text { inv: } \mathrm{x}=\operatorname{sum} \text { of } 1 . .(\mathrm{k}-1) \\
& \text { for }(\text { int } \mathrm{k}=1 ; \mathrm{k}!=20 ; \mathrm{k}=\mathrm{k}+1)\{ \\
& \quad \mathrm{x}=\mathrm{x}+\mathrm{k} ; \\
& \} \\
& / / \mathrm{x}=\text { sum of } 1 . .19
\end{aligned}
$$

k is a loop counter. Initialized before the loop and not changed in the repetend of the for-loop.

Scope of the counter of a for-loop

$\begin{aligned} & \mathrm{x}=0 ; \\ & \text { int } \mathrm{k}=1 ; \\ & \text { // inv: } \mathrm{x}=\text { sum of } 1 . .(\mathrm{k}-1) \\ & \text { while }(\mathrm{k}!=20)\{ \\ & \quad \mathrm{x}=\mathrm{x}+\mathrm{k} ; \\ & \quad \mathrm{k}=\mathrm{k}+1 ; \\ & \} \end{aligned}$	```x= 0; // inv: x = sum of 1..(k-1) for (int k=1;k!= 20; k= k+1) { x= x + k; } // x = sum of 1..19 System.out.println(k);```
// x = sum of $1 . .19$ System.out.println(k);	

A for-loop schema to process a range of integers

// Process $\mathrm{m} . \mathrm{n}$
// inv: $\mathrm{m} . \mathrm{k}-1$ has been processed
and $\mathrm{m}<=\mathrm{k}<=\mathrm{n}+1$
for (int $\mathrm{k}=\mathrm{m} ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1)\{$
Process $\mathrm{k} ;$
$\}$
// Post: m..n has been processed

Use the schema to count number of 'e's in a string

```
// Process m..n
// inv: m..k-1 processed, \(\mathrm{m}<=\mathrm{k}<=\mathrm{n}+1\)
for (int \(k=m ; k<=n ; k=k+1)\) \{
    Process k;
\} // Post: m..n processed
// Store in \(x\) the no. of 'e's in s[0..s.length()-1]
// inv: m..k-1 processed, \(\mathrm{m}<=\mathrm{k}<=\mathrm{n}+1\)
for (int \(k=m ; k<=n ; k=k+1\) ) \{
    Process k;
\} // Post: m..n processed
```

Example:
s = "sequioa", $x=1$
$\mathrm{s}=$ "defense", $\mathrm{x}=2$
m:
n:

Which loop condition do you like better?

$/ /$ Process $0 . . \mathrm{n}$
$\mathrm{k}=1 ;$
// inv: $0 . . \mathrm{k}-1$ processed, $0<=\mathrm{k}<=\mathrm{n}+1$
while $(\mathrm{k}<=\mathrm{n})\{$
\quad Process $\mathrm{k} ;$
$\quad \mathrm{k}=\mathrm{k}+1 ;$
$\}$
// post: $0 . . \mathrm{n}$ processed

$/ /$ Process $0 . . \mathrm{n}$
$\mathrm{k}=1 ;$
// inv: $0 . . \mathrm{k}-1$ processed, $0<=\mathrm{k}<=\mathrm{n}+1$
while $(\mathrm{k}!=\mathrm{n}+1)$ \{
\quad Process $\mathrm{k} ;$
$\quad \mathrm{k}=\mathrm{k}+1$;
$\}$
// post: $0 . . \mathrm{n}$ processed

