CS100J October 16, 2003

 More on Loops

 More on Loops
 Reading: Secs 7.1-7.4

I have graded Q1, Q2, and A2. Monday morning, they will be placed in the Carpenter basement, to be picked up when a consultant is there.

Quotes for the Day:

Instead of trying out computer programs on test cases until they are debugged, one should prove that they have the desired properties. John McCarthy, 1961, A basis for a mathematical theory of computation.

Testing may show the presence of errors, but never their absence. Dijkstra, Second NATO Conf. on Software Engineering, 1969.

On "fixing the invariant"

// $\{\mathrm{s}$ is the sum of $1 . . \mathrm{h}\}$
$\mathrm{s}=\mathrm{s}+(\mathrm{h}+1)$;
$\mathrm{h}=\mathrm{h}+1$;
// $\{\mathrm{s}$ is the sum of 1..h\}

On "fixing the invariant"

$/ /\{s$ is the sum of $h . . n\} \quad s=5+6+7+8 \quad h=5, n=8$
$\mathrm{s}=\mathrm{s}+(\mathrm{h}-1)$;
$\mathrm{h}=\mathrm{h}-1$;
$/ /\{s$ is the sum of $h . . n\} s=4+5+6+7+8 \quad h=4, n=8$

Loop pattern to process a range m..n-1
 (if $\mathrm{m}=\mathrm{n}$, the range is empty)

```
int h= m;
// invariant: m..h-1 has been processed
while (h != n) {
    Process h;
    h=h+1;
}
// { m..n-1 has been processed }
```

Loop pattern to process a range m..n
(if $\mathrm{m}=\mathrm{n}+1$, the range is empty)
int $\mathrm{h}=\mathrm{m}$;
// invariant: m..h-1 has been processed
while (h ! $=\mathrm{n}+1$) \{
Process h;

$$
\mathrm{h}=\mathrm{h}+1 \text {; }
$$

\}
// \{ m..n has been processed \}

Loop pattern to process a range m.. n in reverse order (if $\mathrm{m}=\mathrm{n}+1$, the range is empty)
int $\mathrm{h}=\mathrm{n}+1$;
// invariant: h..n has been processed (in reverse)
while (h ! $=\mathrm{m}$) \{
Process h-1;
$\mathrm{h}=\mathrm{h}-1$;
$\} / /\{\mathrm{m} . . \mathrm{n}$ has been processed (in reverse) $\}$

Logarithmic algorithm to calculate $\mathrm{b}^{* *} \mathrm{c}$, for $\mathrm{c}>=0$

 (i.e. b multiplied by itself c times)$/ * *$ set z to $\mathrm{b}^{* *} \mathrm{c}$, given $\mathrm{c} \geq 0$ */
int $\mathrm{x}=\mathrm{b}$; int $\mathrm{y}=\mathrm{c}$; int $\mathrm{z}=1$;
// invariant: $z^{*} x^{* *} y=b^{* *} c$ and $0 \leq y \leq c$
while ($\mathrm{y}!=0$) \{
if ($\mathrm{y} \% 2=0$)

$$
\{x=x * x ; y=y / 2 ;\}
$$

else $\{\mathrm{z}=\mathrm{z} * \mathrm{x} ; \mathrm{y}=\mathrm{y}-1 ;\}$
\}
$/ /\left\{\mathrm{z}=\mathrm{b}^{* *} \mathrm{c}\right\}$

The algorithm looks at the binary representation of y.

- Testing if y is even means testing whether it rightmost bit is 0 .
- $y=y / 2$; is done by deleting the rightmost bit.
- $y=y-1$; in the algorithm is done by changing the rightmost bit from 1 to 0 .

Logarithmic algorithm to calculate $\mathrm{b}^{* *} \mathrm{c}$, for $\mathrm{c}>=0$ (i.e. b multiplied by itself c times)

/** set z to $\mathrm{b}^{* *} \mathrm{c}$, given $\mathrm{c} \geq 0$ */
int $\mathrm{x}=\mathrm{b}$; int $\mathrm{y}=\mathrm{c}$; int $\mathrm{z}=1$;
$/ /$ invariant: $z^{*} x^{* *} y=b^{* *} c$ and $0 \leq y \leq c$
while (y !=0) \{
if ($\mathrm{y} \% 2=0$)

$$
\{x=x * x ; y=y / 2 ;\}
$$

else $\{\mathrm{z}=\mathrm{z} * \mathrm{x} ; \mathrm{y}=\mathrm{y}-1 ;$ \}
\}
$/ /\left\{\mathrm{z}=\mathrm{b}^{* *} \mathrm{c}\right\}$

The algorithm is
"logarithmic in c"
which means that if $\mathrm{c}=2^{* *} \mathrm{k}$, it takes time proportional to k
E.g. if $\mathrm{c}=2^{* *} 15$, i.e. 32768 , loop
takes at most $2 * 15+1$ iterations!

