
CS100J October 16, 2003
More on Loops

Reading: Secs 7.1–7.4

Quotes for the Day:
Instead of trying out computer programs on test cases until they are
debugged, one should prove that they have the desired properties.
John McCarthy, 1961, A basis for a mathematical theory of computation.

Testing may show the presence of errors, but never their absence.
Dijkstra, Second NATO Conf. on Software Engineering, 1969.

I have graded Q1, Q2, and A2. Monday morning, they will be placed in the
Carpenter basement, to be picked up when a consultant is there.

On “fixing the invariant”

// {s is the sum of 1..h}
s= s + (h+1);
h= h+1;
// {s is the sum of 1..h}

On “fixing the invariant”

// {s is the sum of h..n} s = 5 + 6 + 7 + 8 h = 5, n = 8
s= s + (h-1);
h= h-1;
// {s is the sum of h..n} s = 4 + 5 + 6 + 7 + 8 h = 4, n = 8

Loop pattern to process a range m..n–1
(if m = n, the range is empty)

int h= m;
// invariant: m..h–1 has been processed
while (h != n) {
 Process h;
 h= h+1;
}
// { m..n–1 has been processed }

5..7

5..6

5..5

5..4

Loop pattern to process a range m..n
(if m = n+1, the range is empty)

int h= m;
// invariant: m..h–1 has been processed
while (h != n+1) {
 Process h;
 h= h+1;
}
// { m..n has been processed }

Loop pattern to process a range m..n in reverse order
(if m = n+1, the range is empty)

int h= n+1;
// invariant: h..n has been processed (in reverse)
while (h != m) {
 Process h–1;
 h= h–1;
}// { m..n has been processed (in reverse)}

Logarithmic algorithm to calculate b**c,
for c >= 0 (i.e. b multiplied by itself c times)

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant: z * x**y = b**c and 0 ≤ y ≤ c
while (y != 0) {
 if (y % 2 == 0)

{ x= x * x; y= y/2; }
 else { z= z * x; y= y – 1; }
}
// { z = b**c }

Decimal Binary
001 1 = 2**0
002 10 = 2**1
003 11
004 100 = 2**2
005 101
006 110
007 111
008 1000 = 2**3
009 1001
010 1010
011 1011
012 1100
013 1101
014 1110
015 1111
016 10000 = 2**4
…
099
100
…
256 100000000
 = 2**8

2**n in binary is: 1 followed by n zeros. 2**15 is 32768 (in decimal).

n is called the logarithm of 2**n. The logarithm of 32768 = 2**15 is 15.

Logarithmic algorithm to calculate b**c, for c >= 0
(i.e. b multiplied by itself c times)

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant: z * x**y = b**c and 0 ≤ y ≤ c
while (y != 0) {
 if (y % 2 == 0)
 { x= x * x; y= y/2; }
 else { z= z * x; y= y – 1; }
}
// { z = b**c }

The algorithm looks at the binary
representation of y.

• Testing if y is even means testing
whether it rightmost bit is 0.

• y= y/2; is done by deleting the rightmost
bit.

• y= y–1; in the algorithm is done by
changing the rightmost bit from 1 to 0.

Logarithmic algorithm to calculate b**c, for c >= 0
(i.e. b multiplied by itself c times)

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant: z * x**y = b**c and 0 ≤ y ≤ c
while (y != 0) {
 if (y % 2 == 0)

{ x= x * x; y= y/2; }
 else { z= z * x; y= y – 1; }
}
// { z = b**c }

The algorithm is

“logarithmic in c”

which means that if c = 2**k, it
takes time proportional to k

E.g. if c = 2**15, i.e. 32768, loop

takes at most 2*15 + 1 iterations!

