
CS100J October 07, 2003
Loops

Repetitive statements, or iterative statements, or loops

“O! Thou hast damnable iteration and art, indeed, able to
corrupt a saint.” Shakespeare, Henry IV, Pt I, 1 ii

“Use not vain repetition, as the heathen do.”
Matthew V, 48

Your “if” is the only peacemaker; much virtue if “if”.
Shakespeare, As You Like It.

Start reading chapter 7 on loops. The lab today will
continue to discuss loops.

The while loop

System.out.println(5*5);
System.out.println(6*6);
System.out.println(7*7);
System.out.println(8*8);

int k= 5;
while (k != 9) {
 System.out.println(k*k);
 k= k+1;
}

To execute the while loop:

(1) evaluate condition k != 9;

if it is false, stop execution.

(2) Execute the repetend.

(3) Repeat again from step (1).

Repetend: the thing to be
repeated. The block:
 {
 …
}

The while loop

int k= 5;
while (k != 9) {
 System.out.println(k*k);
 k= k+1;
}

To execute the while loop:

(1) evaluate condition k != 9;

if it is false, stop execution.

(2) Execute the repetend.

(3) Repeat again from step (1).

Trace execution of the loop: Section 7.1.2 shows you how to
“trace” execution of a loop, showing the values of variables as
you go. STUDY THIS SECTION!

The while loop: syntax

while (<condition>)
<repetend>

while (<condition> {
 sequence of declarations
 and statements
}

<condition>: a boolean expression.

<repetend>: a statement.

BUT: We always make the
<repetend> a block.

Using assertions to understand a while loop

int k= 5;

while (k != 9) {
 System.out.println(k*k);
 k= k+1;
}
// {squares of 5..9-1 printed}

System.out.println(5*5);

System.out.println(6*6);

System.out.println(7*7);

System.out.println(8*8);
// {squares of 5..9-1 printed}

Using assertions to understand a while loop
int k= 5;
// {invariant: squares of 5..(k-1) printed }
while (k != 9) {
 System.out.println(k*k);
 k= k+1;
}
// {k = 9}

// { squares of 5..4 printed}
System.out.println(5*5);
// { squares of 5..5 printed}
System.out.println(6*6);
// { squares of 5..6 printed}
System.out.println(7*7);
// { squares of 5..7 printed}
System.out.println(8*8);
// { squares of 5..8 printed}

Using assertions to understand a while loop

int k= 5;
// { invariant: Squares of values in 5..k-1 have been printed }
while (k != 9) {
 System.out.println(k*k);
 k= k+1;
} // {postcondition: Squares of 5..8 have been printed}

Four loopy questions:
1. How does it start? Initialize to make invariant true?
2. When does it stop? Is the postcondition is true?
3. How does it make progress?
4. How does repetend fix the invariant?

Using assertions to understand a while loop
int k= ?;
int x= ?;
while (?) {
 ?

}
// {x = sum of 0..3}

1.How does it start?
2. When does it stop?
3. How does it make progress?
4. How does it fix the invariant?

x= 0;

x= x+1;

x= x+2;

x= x+3;
// {x = sum of 0..3}

Using assertions to understand a while loop

int k= 0;
int x= 0;
// { invariant: x = sum of 0..k-1 }
// inv: x =
while (k != 4) {
 x= x+ k; // k= k+1;
 k= k+1; // x= x+k;
} // { x = sum of 0..3 }
1. How does the loop start?
2. How does it stop?
3. How does it make progress?
4. How does it fix the invariant?

x= 0;
// { x = sum of 0..0 }
x= x+1;
// { x = sum of 0..1 }
x= x+2;
// { x = sum of 0..2 }
x= x+3;
// { x = sum of 0..3 }

Generalization:
// { x = sum of 0..k }

