
CS100J, Fall 2003, Assignment A3. Due on 03 October, before midnight.

About submitting assignments

Submit this assignment using the CS Course Management System: . .
 Email < > from your 

Cornell account so that she has your Cornell netid. Explain that you are taking the course and want to be 
registered to submit assignments. Do this NOW --don't wait until it is time to submit the assignment.

http://cms.csuglab.cornell.edu/ If CS100J 
is not listed, that means that you are not in our course list! shirk@cs.cornell.edu

Purpose

This assignment gives you practice with writing functions whose bodies have assignment statements, 
conditional statements, and blocks. You will also be working with one class.

Ground rules

You may work with one partner. If you do, get on the course management system several days before the 
assignment is due and follow directions for telling the system who your partner will be. Don't wait until the last 
minute to do this; do it several days before you want to submit the assignment.

This is (very, very roughly) a 10-hour assignment. Plan accordingly. Please keep track of your time and, just 
before you submit, tell us how many hours you took in a comment at the top of the class. Spend an hour 
reading this handout so that you thoroughly understand what we are asking for. Do this 
before you start programming!

with your partner

We strongly suggest that you and your partner alternate writing the methods (but with the other person 
watching and helping). You will both benefit from this, even if you find it feels like it is taking longer.

Class Time100J

You will create several functions in class . To help you out, we give : a class with all 
the methods specified but with some stubs for bodies (empty body or simply a return statement), so that the 
program is syntactically correct and will compile. All the methods are specified fully. Look at them carefully; 
they are so complete that one can write the method body based on the specification. This is how you should 
write your method specifications. You can also see the . Get these from 
the course web page or from the CMS.

Time100J you a skeleton

Javadoc specifications for the program

An instance of class Time100J represents a time in some time zone. The time zones that are implemented are:

GMT: Greenwich Mean Time, GMT
BST: British Summer Time, GMT+1
EST: Eastern Standard Time, GMT-5 hours (NY)
EDT: Eastern Daylight Savings Time, GMT-4 hours (NY)
CST: Central Standard Time, GMT-6 hours (Chicago)
CDT: Central Daylight Savings Time, GMT-5 hours (Chicago)
MST: Mountain Standard Time, GMT-7 hours (Phoenix)
MDT: Mountain Daylight Savings Time, GMT-6 (Phoenix)
PST: Pacific Standard Time, GMT-8 hours (LA)
PDT: Pacific Daylight Saving Time, GMT-7 hours (LA)
IND: India time, GMT+5:30 hours (New Delhi)



India (IND) is included only to show that times are not always on hourly boundaries from GMT. Some time 
may appear negative or greater than 24 hours. This is because we allow a conversion of a time from one time 
zone to another, and a time of 0 hours GMT is -7 hours PDT (for example), while a time of 23:59 GMT is 
29:29 IND. See the comment on the class for a complete specification.

An instance of the class can show you the time using a 24-hour clock or using the AM-PM designation; it is 
the user's choice.

Study the specification of the class and its methods carefully, to get an overall view of what the class is for. For 
this purpose, use either the skeleton or, better, the JAVADOC spec for it.

This assignment will be presented as a series of tasks. 
. And, wherever it is possible, write each method in an incremental fashion. This holds especially for 

method toString, which is fairly complicated. Test each method carefully and thoroughly, using the 
Interactions Pane, before proceeding to the next.

Finish each task completely before proceeding to the 
next

You can see in the skeleton that we have given you two completed two constructors (and one that is 
uncompleted). Therefore, you can create instances of the class, but you can't get anything out of them. So, 
your first task is to complete getter methods getTime, getZone, and getAmPm. Once they are properly written, 
check them out! Make sure they work. This task should not be difficult.

Task 1: getter methods

Now, write function toString. You MUST follow its specification carefully. Don't just blindly make it do what 
you want; implement it to be consistent with the specification. Actually, to help you out, we have put in the 
body of toString a sequence of statement-comments that, together, do what the body is supposed to do. All 
you have to do isimplement these statement-comments. Of course, if you want, start with an empty body and 
do it the way YOU want. But it must be correct! 

Task 2: function toString.

After your write function toString, test it thoroughly, with instances of the class for negative times, times in the 
range 0..24, and times greater than 24 hours. Also, test these with both modes of output --24-hour clock and 
12-hour clock. This function MUST be correct before you proceed.

Users may give time zones that are not legal. The purpose of private function isLegal is to test whether its 
parameter is one of the legal time zones, returning true if it is and false if it is not. Implement this function. Be 
sure to test it on ALL possible legal zones, as well as illegal ones, before proceeding to the next step. You can 
test it in two ways. First, make it public (temporarily only), so that you can call it from the Interactions pane. 
Second, notice that the second constructor calls isLegal, so, you can test isLegal using the constructor. Hint: 
Here's one way to think about writing isLegal. Can you use one of the String functions to search for a zone in 
some string?

Task 3: function isLegal.

This procedure should be easy to write and test. It is a simple setter method.
Task 4: procedure setDisplay.

Up to now, any instance you created had either time 0 or a time for which you gave a number of seconds. 
Now implement the third constructor, the one that has 5 parameters. Use the second constructor as an example 
in writing this one. Test it thoroughly before proceeding!

Task 5: the third constructor.

Task 6: function timeInZone.



This function is given a time in one zone and is asked to create a new Time100J instance that has the same 
time but in a different time zone. To help you out, take a look at function timeInGMT. It does roughly the 
same thing but always converts to GMT time. Function timeInGMT should give you an idea how to write 
function timeInZone. Here's a point to ponder. You have to translate from ANY time zone to ANY OTHER 
time zone. How many possibilities are there? Can you make use of function timeInGMT to simplify the task? 
Make sure you test this method thoroughly before proceeding in to the next task.

Finally, you have to implement function compareTo. Of course, it has to satisfy its specification. Note that time 
18:00 GMT is the same as time 13:00 EST. You can't really compare the times until they are both converted to 
the same time zone. What's the simplest way to do that?

Task 7: function compareTo.

You have written all the methods. You see how a class filled with methods can be written one method at a 
time, in order to come up with a neat little class. Now, go over your program once more. Make sure the 
indentation is correct --use DrJava's indenting feature if you want-- and make sure that the comments are 
suitable (we gave most of them to you).

Task 8. Finish up.

What to submit

Use the link to get on the course website and submit the . 
Before you do that, please place a comment at the top of the class that tells us roughly how many hours you 
worked on this assignment. Remember that, as always, the name of a file is derived from the class it contains 
and that correct capitalization is required. Make sure you submit the .java file, and not the .class or the .java~ 
file!!!!!

http://cms.csuglab.cornell.edu/ Time100J.java

By: David Gries, Jason Li


